题目内容

1.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{7}}{4}$,则双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为(  )
A.$\frac{5}{4}$B.$\frac{3}{2}$C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{5}}{4}$

分析 利用椭圆与双曲线的离心率计算公式即可得出.

解答 解:∵椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{7}}{4}$,
∴$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{7}}{4}$,解得$\frac{{b}^{2}}{{a}^{2}}$=$\frac{9}{16}$.
则双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$=$\sqrt{1+\frac{9}{16}}$=$\frac{5}{4}$.
故选:A.

点评 本题考查了椭圆与双曲线的标准方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网