题目内容

12.若直线ax-y-a+3=0将关于x,y的不等式组$\left\{\begin{array}{l}{x-2y+5≥0}\\{x+y-1≥0}\\{x-y+1≤0}\end{array}\right.$表示的平面区域分成面积相等的两部分,则z=4x-ay的最大值是4.

分析 根据条件求出直线恒过定点C(1,3),根据面积相等得到直线过AB的中点,求出a的值,结合直线斜率的几何意义进行求解即可.

解答 解:由直线ax-y-a+3=0得a(x-1)+(3-y)=0,
即直线恒过C(1,3),x,y的不等式组$\left\{\begin{array}{l}{x-2y+5≥0}\\{x+y-1≥0}\\{x-y+1≤0}\end{array}\right.$表示的平面区域如图:由$\left\{\begin{array}{l}{x-2y+5=0}\\{x-y+1=0}\end{array}\right.$解得B(3,4),$\left\{\begin{array}{l}{x+y-1=0}\\{x-2y+5=0}\end{array}\right.$解得A(-1,2),可得C(1,3)是AB的中点,
若直线ax-y-a+3=0将区域分成面积相等的两部分,
直线只需经过顶点(0,1),(0,1)代入ax-y-a+3=0,解得a=2.
z=4x-ay=4x-2y,即y=2x-$\frac{z}{2}$,经过区域内的点B时,目标函数取得最大值.
此时最大值为:4×3-2×4=4.
故答案为:4.

点评 本题主要考查线性规划的应用,直线恒过定点以及三角形面积相等的应用,直线斜率的计算,综合性较强,利用数形结合是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网