题目内容
12.若直线ax-y-a+3=0将关于x,y的不等式组$\left\{\begin{array}{l}{x-2y+5≥0}\\{x+y-1≥0}\\{x-y+1≤0}\end{array}\right.$表示的平面区域分成面积相等的两部分,则z=4x-ay的最大值是4.分析 根据条件求出直线恒过定点C(1,3),根据面积相等得到直线过AB的中点,求出a的值,结合直线斜率的几何意义进行求解即可.
解答
解:由直线ax-y-a+3=0得a(x-1)+(3-y)=0,
即直线恒过C(1,3),x,y的不等式组$\left\{\begin{array}{l}{x-2y+5≥0}\\{x+y-1≥0}\\{x-y+1≤0}\end{array}\right.$表示的平面区域如图:由$\left\{\begin{array}{l}{x-2y+5=0}\\{x-y+1=0}\end{array}\right.$解得B(3,4),$\left\{\begin{array}{l}{x+y-1=0}\\{x-2y+5=0}\end{array}\right.$解得A(-1,2),可得C(1,3)是AB的中点,
若直线ax-y-a+3=0将区域分成面积相等的两部分,
直线只需经过顶点(0,1),(0,1)代入ax-y-a+3=0,解得a=2.
z=4x-ay=4x-2y,即y=2x-$\frac{z}{2}$,经过区域内的点B时,目标函数取得最大值.
此时最大值为:4×3-2×4=4.
故答案为:4.
点评 本题主要考查线性规划的应用,直线恒过定点以及三角形面积相等的应用,直线斜率的计算,综合性较强,利用数形结合是解决本题的关键.
练习册系列答案
相关题目
7.
某程序框图如图所示,该程序运行后若输出S的值是2,则判断框内可填写( )
| A. | i≤2015? | B. | i≤2016? | C. | i≤2017? | D. | i≤2018? |
17.已知f(x)是定义在R上的偶函数,且在区间(-∞,0]上单调递增,若满足f(2${\;}^{lo{g}_{3}a}$)>f(-$\sqrt{2}$),则a的取值范围是( )
| A. | (-∞,$\sqrt{3}$) | B. | (0,$\sqrt{3}$) | C. | ($\sqrt{3}$,+∞) | D. | (1,$\sqrt{3}$) |
10.将函数f(x)=$\sqrt{2}$sin2x-$\sqrt{2}$cos2x+1的图象向左平移$\frac{π}{4}$个单位,再向下平移1个单位,得到函数y=g(x)的图象,则下列关予函数y=g(x)的说法错误的是( )
| A. | 函数y=g(x)的最小正周期为π | |
| B. | 函数y=g(x)的图象的一条对称轴为直线x=$\frac{π}{8}$ | |
| C. | ${∫}_{0}^{\frac{π}{2}}$g(x)dx=$\sqrt{2}$ | |
| D. | 函数y=g(x)在区间[$\frac{π}{12}$,$\frac{5π}{8}$]上单调递减 |