题目内容
【题目】某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点
为圆心的两个同心圆弧和延长后通过点
的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为
米,圆心角为
(弧度).
![]()
(1)求
关于
的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为
,求
关于
的函数关系式,并求出
为何值时,
取得最大值?
【答案】(1)
(2)
, ![]()
【解析】试题分析:(1)根据已知条件,将周长
米为等量关系可以建立
满足的关系式,再由此关系式进一步得到函数解析式:
,即可解得
;(2)根据题意及(1)可得花坛的面积为
,装饰总费用为
,因此可得函数解析式
,而要求
的最大值,即求函数
的最大值,可以考虑采用换元法令
,从而
,再利用基本不等式,即可求得
的最大值:
,当且仅当
,
时取等号,此时
,
,因此当
时,花坛的面积与装饰总费用的比最大.
试题解析:(1)扇环的圆心角为
,则
,∴
, 3分
(2)由(1)可得花坛的面积为
, 6分
装饰总费用为
, 8分
∴花坛的面积与装饰总费用的
, 10分
令
,则
,当且仅当
,
时取等号,此时
,
, 12分
答:当
时,花坛的面积与装饰总费用的比最大. 13分
【题目】随着共享单车的成功运营,更多的共享产品逐步走入大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷.某公司随即抽取
人对共享产品是否对日常生活有益进行了问卷调查,并对参与调查的
人中的性别以及意见进行了分类,得到的数据如下表所示:
男 | 女 | 总计 | |
认为共享产品对生活有益 |
|
|
|
认为共享产品对生活无益 |
|
|
|
总计 |
|
|
|
(1)根据表中的数据,能否在犯错误的概率不超过
的前提下,认为对共享产品的态度与性别有关系?
(2)现按照分层抽样从认为共享产品增多对生活无益的人员中随机抽取
人,再从
人中随机抽取
人赠送超市购物券作为答谢,求恰有
人是女性的概率.
参与公式: ![]()
临界值表:
|
|
|
|
|
|
|
|
|
|
|
|
|
|