题目内容
20.已知直线l1:3x+4y-3=0,直线l2:6x+8y-1=0(b∈R)平行,则它们之间的距离为( )| A. | 2 | B. | $\frac{1}{5}$ | C. | 1 | D. | $\frac{1}{2}$ |
分析 利用平行线之间的距离公式即可得出.
解答 解:直线l2:6x+8y-1=0(b∈R)化为:3x+4y-$\frac{1}{2}$=0,
∴它们之间的距离=$\frac{|-3-(-\frac{1}{2})|}{\sqrt{{3}^{2}+{4}^{2}}}$=$\frac{1}{2}$.
故选:D.
点评 本题考查了平行线之间的距离公式,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
5.设F1,F2是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦点,M是C上一点,O是坐标原点,若|MF1|=2|MF2|,|MF2|=|OF2|,则C的离心率是( )
| A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\frac{5}{2}$ | C. | 2 | D. | $\sqrt{5}$ |
9.已知A1,A2为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的两个顶点,以A1A2为直径的圆与双曲线的一条渐近线交于M,N两点,若△A1MN的面积为$\frac{a^2}{2}$,则该双曲线的离心率是( )
| A. | $\frac{{2\sqrt{2}}}{3}$ | B. | $\frac{{2\sqrt{3}}}{3}$ | C. | $\frac{{2\sqrt{5}}}{3}$ | D. | $\frac{{2\sqrt{6}}}{3}$ |
10.正方体ABCD-A1B1C1D1的棱长为6,点O在BC上,且BO=OC,过点O的直线l与直线AA1,C1D1分别交于M,N两点,则MN与面ADD1A1所成角的正弦值为( )
| A. | $\frac{2}{3}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{3}$ |