题目内容

在△ABC中,已知b•cosC+c•cosB=3a•cosB,其中a、b、c分别为角A、B、C的对边,则cosB的值为
 
考点:正弦定理,两角和与差的正弦函数
专题:计算题,解三角形
分析:直接利用正弦定理以及两角和的正弦函数公式,即可求出cosB的值.
解答: 解:因为b•cosC+c•cosB=3a•cosB,
由正弦定理可知,sinBcosC+sinCcosB=3sinAcosB,
即sin(B+C)=sinA=3sinAcosB,
所以cosB=
1
3

故答案为:
1
3
点评:本题考查正弦定理的应用,两角和与差的正弦函数的应用,考查计算能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网