题目内容

16.已知一次函数f(x)满足f(x+1)+f(x)=2x+3对任意实数x都成立.
(1)求函数f(x)的解析式;
(2)若g(x)是定义在区间[-1,1]上的偶函数,当x∈[0,1]时,g(x)=f(x),求g(x)的
解析式.

分析 (1)设f(x)=kx+b(k≠0),由f(x+1)+f(x)=2x+3,即可得到$\left\{\begin{array}{l}{2k=2}\\{k+2b=3}\end{array}\right.$,解得即可.
(2)设x<0,利用函数是偶函数,得到-x>0,然后代入求解即可.

解答 解(1):设f(x)=kx+b(k≠0),由f(x+1)+f(x)=2x+3,得k(x+1)+1+kx+b=2x+3
∴$\left\{\begin{array}{l}{2k=2}\\{k+2b=3}\end{array}\right.$,
解得k=1,b=1,
∴f(x)=x+1,x∈R,
(2)设x∈[-1,0),则-x∈(0,1],
∵x∈[0,1]时,g(x)=f(x)=x+1,
∴g(-x)=-x+1,又因为g(x)为偶函数
∴g(-x)=g(x)=-x+1
∴$g(x)=\left\{{\begin{array}{l}{x+1,0≤x≤1}\\{-x+1,-1≤x<0}\end{array}}\right.$.

点评 本题考查解析式的求解,考查学生分析问题解决问题的能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网