题目内容
【题目】已知球
是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)
的外接球,
,
,点
在线段
上,且
,过点
作球
的截面,则所得截面圆面积的取值范围是( )
A.
B.
C.
D. ![]()
【答案】B
【解析】
先利用等边三角形中心的性质,结合勾股定理计算得球的半径,过
的最大截面是经过球心的截面,可由球的半径计算得出.过
最小的截面是和
垂直的截面,先计算得
的长度,利用勾股定理计算得这个截面圆的半径,由此计算得最小截面的面积.
画出图象如下图所示,其中
是球心,
是等边三角形
的中心.根据等边三角形中心的性质有
,
,设球的半径为
,在三角形
中,由勾股定理得
,即
,解得
,故最大的截面面积为
.在三角形
中,
,由余弦定理得
.在三角形
中,
,过
且垂直
的截面圆的半径
,故最小的截面面积为
.综上所述,本小题选B.
【题目】近年来,我国工业经济发展迅速,工业增加值连年攀升,某研究机构统计了近十年(从2008年到2017年)的工业增加值(万亿元),如下表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
工业增加值 | 13.2 | 13.8 | 16.5 | 19.5 | 20.9 | 22.2 | 23.4 | 23.7 | 24.8 | 28 |
依据表格数据,得到下面的散点图及一些统计量的值.
|
|
|
|
|
5.5 | 20.6 | 82.5 | 211.52 | 129.6 |
![]()
(1)根据散点图和表中数据,此研究机构对工业增加值
(万亿元)与年份序号
的回归方程类型进行了拟合实验,研究人员甲采用函数
,其拟合指数
;研究人员乙采用函数
,其拟合指数
;研究人员丙采用线性函数
,请计算其拟合指数,并用数据说明哪位研究人员的函数类型拟合效果最好.(注:相关系数
与拟合指数
满足关系
).
(2)根据(1)的判断结果及统计值,建立
关于
的回归方程(系数精确到0.01);
(3)预测到哪一年的工业增加值能突破30万亿元大关.
附:样本
的相关系数
,
,
,
.
【题目】每年春晚都是万众瞩目的时刻,这些节目体现的文化内涵、历史背景等反映了社会的进步.国家的富强,人民生活水平的提高等.某学校高三年级主任开学初为了解学生在看春晚后对节目体现的文化内涵、历史背景等是否会在今年的高考题中体现进行过思考,特地随机抽取100名高三学生(其中文科学生50,理科学生50名),进行了调查.统计数据如表所示(不完整):
“思考过” | “没有思考过” | 总计 | |
文科学生 | 40 | 10 | |
理科学生 | 30 | ||
总计 | 100 |
(1)补充完整所给表格,并根据表格数据计算是否有
的把握认为看春晚后会思考节目体现的文化内涵、历史背景等与文理科学生有关;
(2)①现从上表的”思考过”的文理科学生中按分层抽样选出7人.再从这7人中随机抽取4人,记这4人中“文科学生”的人数为
,试求
的分布列与数学期望;
②现设计一份试卷(题目知识点来自春晚相关知识整合与变化),假设“思考过”的学生及格率为
,“没有思考过”的学生的及格率为
.现从“思考过”与“没有思考过”的学生中分别随机抽取一名学生进行测试,求两人至少有一个及格的概率.
附参考公式:
,其中
.
参考数据:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |