ÌâÄ¿ÄÚÈÝ
12£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔ×ø±êÔµãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2sin¦È£¬¦È¡Ê[0£¬2¦Ð£©£®£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÔÚÇúÏßCÉÏÇóÒ»µãD£¬Ê¹Ëüµ½Ö±Ïßl£º$\left\{\begin{array}{l}{x=\sqrt{3}t+\sqrt{3}}\\{y=3t+2}\end{array}\right.$£¬£¨tΪ²ÎÊý£¬t¡ÊR£©µÄ¾àÀë×î¶Ì£¬²¢Çó³öµãDµÄÖ±½Ç×ø±ê£®
·ÖÎö £¨I£©ÀûÓÃ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\\{{¦Ñ}^{2}={x}^{2}+{y}^{2}}\end{array}\right.$¿É°ÑÔ²CµÄ¼«×ø±ê·½³Ì»¯ÎªÆÕͨ·½³Ì£®
£¨II£©ÏûÈ¥²ÎÊý°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬Çó³öÔ²ÐÄCµ½Ö±ÏßlµÄ¾àÀëd£¬µÃ³öÖ±ÏßÓëÔ²µÄλÖùØÏµ¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2sin¦È£¬¦È¡Ê[0£¬2¦Ð£©£¬¼´¦Ñ2=2¦Ñsin¦È£¬»¯Îªx2+y2-2y=0£¬Å䷽Ϊx2+£¨y-1£©2=1£®
£¨2£©ÇúÏßCµÄÔ²ÐÄC£¨0£¬1£©£¬°ë¾¶r=1£®
Ö±Ïßl£º$\left\{\begin{array}{l}{x=\sqrt{3}t+\sqrt{3}}\\{y=3t+2}\end{array}\right.$£¬£¨tΪ²ÎÊý£¬t¡ÊR£©»¯ÎªÆÕͨ·½³Ì£º$\sqrt{3}x$-y-1=0£¬
¿ÉµÃÔ²ÐÄCµ½Ö±ÏßlµÄ¾àÀëd=$\frac{|0-1-1|}{2}$=1=0£¬
¡àÖ±ÏßlÓëÔ²CÏàÇУ¬ÆäÇе㼴ΪËùÇó£®
ÁªÁ¢$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}-2y=0}\\{\sqrt{3}x-y-1=0}\end{array}\right.$£¬½âµÃD$£¨\frac{\sqrt{3}}{2}£¬\frac{1}{2}£©$£®
µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢Ö±ÏßÓëÔ²ÏàÇÐÎÊÌ⣬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | -10 | B£® | 10 | C£® | -2 | D£® | 2 |
| A£® | 2 | B£® | $\frac{\sqrt{2}}{2}$ | C£® | $\sqrt{2}$ | D£® | $\sqrt{3}$ |
| A£® | {-1£¬0£¬1} | B£® | {-1£¬1} | C£® | {-1£¬1£¬2} | D£® | {1£¬0} |
| A£® | $2\sqrt{2}$ | B£® | $\sqrt{10}$ | C£® | $\sqrt{5}+1$ | D£® | $2+\sqrt{2}$ |