题目内容
20.已知f(x)是定义在R上周期为4的偶函数,若f(x)在区间[-2,0]上单凋递减,且f(-1)=0,则f(x)在区间[0,10]内的零点个数是5.分析 由题意可得函数图象,数形结合可得.
解答
解:由题意可得f(1)=f(-1)=0,
函数的图象大致如图所示,
由图象可知f(x)在区间[0,10]内的零点个数为5,
故答案为:5.
点评 本题考查函数的周期性和奇偶性,数形结合是解决问题的关键,属基础题.
练习册系列答案
相关题目
10.在年龄互不相同的5名工人中选派工人去看管A、B两个仓库,且两个仓库都至少要有一人看管,若看管仓库A的工人年龄最大的小于看管仓库B的工人年龄最小的,则不同的选派方法有( )
| A. | 45 | B. | 49 | C. | 55 | D. | 59 |
11.设F1,F2分别为椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线C2:$\frac{{x}^{2}}{{{a}_{1}}^{2}}$-$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1(a1>b1>0)的公共焦点,它们在第一象限内交于点M,∠F1MF2=90°,若椭圆的离心率e∈[$\frac{3}{4}$,$\frac{2\sqrt{2}}{3}$],则双曲线C2的离心率e1的取值范围为( )
| A. | [$\frac{2\sqrt{14}}{7}$,$\frac{3\sqrt{2}}{2}$] | B. | [$\frac{2\sqrt{14}}{7}$,$\sqrt{2}$) | C. | [$\sqrt{2}$,$\frac{3\sqrt{2}}{2}$] | D. | [$\frac{3\sqrt{2}}{2}$,+∞) |