题目内容

已知f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,若m,n∈[-1,1],m+n≠0时,有
f(m)+f(n)
m+n
>0.
(1)判断f(x)的单调性,并证明;
(2)若f(x)≤t2-2at+1对所有x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.
考点:函数奇偶性的性质,函数单调性的判断与证明
专题:函数的性质及应用
分析:(1)利用已知与增函数的定义即可得出;
(2)由于f(x)为增函数,可得f(x)的最大值为f(1)=1.f(x)≤t2-2at+1对a∈[-1,1],x∈[-1,1]恒成立?t2-2at+1≥1对任意a∈[-1,1]恒成立?t2-2at≥0对任意a∈[-1,1]恒成立.看作a的一次函数,即可得出.
解答: 解:(1)任取x1、x2∈[-1,1],且x2>x1,则
f(x2)-f(x1)=f(x2)+f(-x1)=
f(x2)+f(-x1)
x2+(-x1)
•(x2-x1)>0,
∴f(x2)>f(x1),∴f(x)是增函数.  
(2)由于f(x)为增函数,∴f(x)的最大值为f(1)=1,
∴f(x)≤t2-2at+1对a∈[-1,1]、x∈[-1,1]恒成立?t2-2at+1≥1对任意a∈[-1,1]恒成立?t2-2at≥0对任意a∈[-1,1]恒成立.
把y=t2-2at看作a的函数,
由a∈[-1,1]知其图象是一条线段,
∴t2-2at≥0对任意a∈[-1,1]恒成立
?
t2-2×(-1)t≥0
t2-2×1×t≥0
,解得
t≤-2或t≥0
t≤0或t≥2

解得:t≤-2,或t=0,或t≥2.
点评:本题考查了抽象函数的单调性、恒成立问题的等价转化方法、一次函数的单调性,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网