题目内容
14.| A. | AC⊥BD | B. | AC∥截面PQMN | ||
| C. | AC=BD | D. | 异面直线PM与BD所成的角为45° |
分析 首先由正方形中的线线平行推导线面平行,再利用线面平行推导线线平行,这样就把AC、BD平移到正方形内,即可利用平面图形知识做出判断.
解答 解:因为截面PQMN是正方形,所以PQ∥MN、QM∥PN,
则PQ∥平面ACD、QM∥平面BDA,
所以PQ∥AC,QM∥BD,
由PQ⊥QM可得AC⊥BD,故A正确;
由PQ∥AC可得AC∥截面PQMN,故B正确;
异面直线PM与BD所成的角等于PM与QM所成的角,故D正确;
综上C是错误的.
故选:C.
点评 本题主要考查线面平行的性质与判定,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目
6.已知函数f(x)=sin(2x+φ)(φ∈R),且f(x)≤|f($\frac{π}{6}$)|,则f(x)图象的一条对称轴方程为( )
| A. | x=$\frac{4π}{3}$ | B. | x=$\frac{2π}{3}$ | C. | x=$\frac{π}{2}$ | D. | x=-$\frac{π}{6}$ |