题目内容
13.已知角α的终边上一点(x,3),且tanα=-2.( I)求x的值;
( II)若tanθ=2,求$\frac{sinαcosα}{{1+{{cos}^2}α}}+\frac{sinθ-cosθ}{sinθ+cosθ}$的值.
分析 ( I)利用任意角的三角函数的定义,求得x的值.
( II)利用同角三角函数的基本关系,求得要求式子的值.
解答 解:( I)由三角函数的定义,得$tanα=\frac{3}{x}=-2$,解得$x=-\frac{3}{2}$.
( II)$\frac{sinαcosα}{{1+{{cos}^2}α}}+\frac{sinθ-cosθ}{sinθ+cosθ}=\frac{sinαcosα}{{{{sin}^2}α+2{{cos}^2}α}}+\frac{sinθ-cosθ}{sinθ+cosθ}$
=$\frac{tanα}{{tan}^{2}α+2}$+$\frac{tanθ-1}{tanθ+1}$=$\frac{-2}{4+2}$+$\frac{2-1}{2+1}$=0.
点评 本题主要考查任意角的三角函数的定义,同角三角函数的基本关系,属于基础题.
练习册系列答案
相关题目
1.某影院有40排座位,每排有46个座位,一个报告会上坐满了听众,会后留下座号为20的所有听众进行座谈,这是运用了( )
| A. | 抽签法 | B. | 随机数表法 | C. | 系统抽样法 | D. | 放回抽样法 |
2.在?ABCD中,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,$\overrightarrow{AC}$=$\overrightarrow{c}$,$\overrightarrow{BD}$=$\overrightarrow{d}$,则下列等式中不正确的是( )
| A. | $\overrightarrow{a}+\overrightarrow{b}$=$\overrightarrow{c}$ | B. | $\overrightarrow{a}$-$\overrightarrow{b}$=$\overrightarrow{d}$ | C. | $\overrightarrow{b}$-$\overrightarrow{a}$=$\overrightarrow{d}$ | D. | $\overrightarrow{c}$-$\overrightarrow{d}$=2$\overrightarrow{a}$ |
3.大学生赵敏利用寒假参加社会实践,对机械销售公司7月份至12月份销售某种机械配件的销售量及销售单价进行了调查,销售单价x和销售量y之间的一组数据如表所示:
(1)根据7至11月份的数据,求出y关于x的回归直线方程;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?
(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).
参考公式:回归直线方程$\hat y=\hat bx+\hat a$,其中$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,参考数据:$\sum_{i=1}^5{{x_i}{y_i}=392,}\sum_{i=1}^n{x_i^2=502.5}$.
| 月份i | 7 | 8 | 9 | 10 | 11 | 12 |
| 销售单价xi(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
| 销售量yi(件) | 11 | 10 | 8 | 6 | 5 | 14 |
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?
(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).
参考公式:回归直线方程$\hat y=\hat bx+\hat a$,其中$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,参考数据:$\sum_{i=1}^5{{x_i}{y_i}=392,}\sum_{i=1}^n{x_i^2=502.5}$.