题目内容
20.设$a=\sqrt{{x^2}-xy+{y^2}},b=p\sqrt{xy},c=x+y$,若对任意的正实数x,y,都存在以a,b,c为三边长的三角形,则实数p的取值范围是( )| A. | (1,3) | B. | (1,2] | C. | $(\frac{1}{2},\frac{7}{2})$ | D. | 以上均不正确 |
分析 由基本不等式可得a≥$\sqrt{xy}$,c≥2$\sqrt{xy}$,再由三角形任意两边之和大于第三边可得,$\sqrt{xy}$+2$\sqrt{xy}$>$b=p\sqrt{xy}$,且 $p\sqrt{xy}$+$\sqrt{xy}$>2$\sqrt{xy}$,且 $p\sqrt{xy}$+2$\sqrt{xy}$>$\sqrt{xy}$,由此求得实数p的取值范围.
解答 解:对于正实数x,y,由于$a=\sqrt{{x}^{2}-xy+{y}^{2}}$≥$\sqrt{2xy-xy}$=$\sqrt{xy}$,c=x+y≥2$\sqrt{xy}$,$b=p\sqrt{xy}$,
且三角形任意两边之和大于第三边,
∴$\sqrt{xy}$+2$\sqrt{xy}$>$b=p\sqrt{xy}$,且 $p\sqrt{xy}$+$\sqrt{xy}$>2$\sqrt{xy}$,且 $p\sqrt{xy}$+2$\sqrt{xy}$>$\sqrt{xy}$.
解得 1<p<3,故实数p的取值范围是(1,3),
故选:A.
点评 本题主要考查基本不等式的应用,注意不等式的使用条件,以及三角形中任意两边之和大于第三边,属于中档题.
练习册系列答案
相关题目
8.2017年将进行高考改革,语文学科要加强对中华民族优秀传统文化的考查,充分体现语文的基础性和作为母语学科的重要地位,一时间“语文分值将会提高到180分”引起广泛关注,为了解在校大学生及社会人士(包括老师、家长等)的看法,某媒体在全省选择了3600人进行调查,就是否“提高语文分值”的问题,调查统计的结果如表:
媒体在全体样品中用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,其中持“无所谓”态度的人中抽取了72人.
(1)求应在持“不应该提高”态度的人中抽取多少人?
(2)在持“不应该提高”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望.
| 态度 调查人群 | 应该取消 | 不应该提高 | 无所谓 |
| 在校学生 | 2100人 | 120人 | y人 |
| 社会人士 | 600人 | x人 | z人 |
(1)求应在持“不应该提高”态度的人中抽取多少人?
(2)在持“不应该提高”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望.
5.如图所示,当输入a,b分别为2,3时,最后输出的M的值是( )

| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
9.已知点列An(an,bn)(n∈N*)均为函数y=ax(a>0,a≠1)的图象上,点列Bn(n,0)满足|AnBn|=|AnBn+1|,若数列{bn}中任意连续三项能构成三角形的三边,则a的取值范围为( )
| A. | (0,$\frac{\sqrt{5}-1}{2}$)∪($\frac{\sqrt{5}+1}{2}$,+∞) | B. | ($\frac{\sqrt{5}-1}{2}$,1)∪(1,$\frac{\sqrt{5}+1}{2}$) | C. | (0,$\frac{\sqrt{3}-1}{2}$)∪($\frac{\sqrt{3}+1}{2}$,+∞) | D. | ($\frac{\sqrt{3}-1}{2}$,1)∪(1,$\frac{\sqrt{3}+1}{2}$) |