题目内容
计算:
(1)(2
)-
-3(
-1)-1+π0;
(2)lg52+
lg8+lg5lg20+(lg2)2.
(1)(2
| 1 |
| 4 |
| 1 |
| 2 |
| 2 |
(2)lg52+
| 2 |
| 3 |
分析:(1)变带分数为假分数,把中间的一项运用分母有理化,然后进行有理指数幂的化简运算;
(2)直接运用对数的运算性质进行化简运算.
(2)直接运用对数的运算性质进行化简运算.
解答:解:(1)(2
)-
-3(
-1)-1+π0
=[(
)2]-
-3×
+1
=(
)-1-3×(
+1)+1
=
-3
-3+1
=-
-3
.
(2)lg52+
lg8+lg5•lg20+(lg2)2
=lg25+lg(23)
+lg5•lg(22×5)+(lg2)2
=lg25+lg4+lg5(2lg2+lg5)+(lg2)2
=lg102+2lg5•lg2+(lg5)2+(lg2)2
=2+(lg5+lg2)2
=2+1
=3.
| 1 |
| 4 |
| 1 |
| 2 |
| 2 |
=[(
| 3 |
| 2 |
| 1 |
| 2 |
| 1 | ||
|
=(
| 3 |
| 2 |
| 2 |
=
| 2 |
| 3 |
| 2 |
=-
| 4 |
| 3 |
| 2 |
(2)lg52+
| 2 |
| 3 |
=lg25+lg(23)
| 2 |
| 3 |
=lg25+lg4+lg5(2lg2+lg5)+(lg2)2
=lg102+2lg5•lg2+(lg5)2+(lg2)2
=2+(lg5+lg2)2
=2+1
=3.
点评:本题考查有理指数幂的化简求值,考查了对数式的运算性质,解答的关键是熟记有关性质,是基础题.
练习册系列答案
相关题目