ÌâÄ¿ÄÚÈÝ
1£®ÎÒÃdzÆÂú×ãÏÂÃæÌõ¼þµÄº¯Êýy=f£¨x£©Îª¡°¦Îº¯Êý¡±£º´æÔÚÒ»ÌõÓ뺯Êýy=f£¨x£©µÄͼÏóÓÐÁ½¸ö²»Í¬½»µã£¨ÉèΪP£¨x1£¬y1£©Q£¨x2£¬y2£©£©µÄÖ±Ïߣ¬y=£¨x£©ÔÚx=$\frac{{x}_{1}+{x}_{2}}{2}$´¦µÄÇÐÏßÓë´ËÖ±Ï߯½ÐУ®ÏÂÁк¯Êý£º¢Ùy=$\frac{1}{x}$ ¢Úy=x2£¨x£¾0£©¢Ûy=$\sqrt{1-{x}^{2}}$ ¢Üy=lnx£¬
ÆäÖÐΪ¡°¦Îº¯Êý¡±µÄÊÇ¢Ú¢Û £¨½«ËùÓÐÄãÈÏΪÕýÈ·µÄÐòºÅÌîÔÚºáÏßÉÏ£©
·ÖÎö ÀûÓõ¼ÊýµÄ¼¸ºÎÒâÒ壬·Ö±ðÅжÏËĸöº¯ÊýÇóÔÚx=$\frac{{x}_{1}+{x}_{2}}{2}$´¦µÄÇÐÏßбÂÊÓëµ¼ÊýÖµÊÇ·ñÏàµÈ¼´¿É£®
½â´ð ½â£º£¨1£©ÉèÒ»ÌõÖ±ÏßlÓ뺯Êýy=$\frac{1}{x}$µÄͼÏóÓÐÁ½¸ö²»Í¬½»µãP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¨x1¡Ùx2£©µÄÖ±Ïߣ¬¿ÉµÃkl=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=-$\frac{1}{{x}_{1}{x}_{2}}$£®ÓÉÓÚy¡ä=-$\frac{1}{{x}^{2}}$£¬¿ÉµÃy=f£¨x£©ÔÚx=$\frac{{x}_{1}+{x}_{2}}{2}$´¦ÇÐÏßµÄбÂÊk=f¡ä£¨ $\frac{{x}_{1}+{x}_{2}}{2}$£©=-$\frac{4}{£¨{x}_{1}+{x}_{2}£©^{2}}$£¬¿ÉµÃ-$\frac{1}{{x}_{1}{x}_{2}}$¡Ù-$\frac{4}{£¨{x}_{1}+{x}_{2}£©^{2}}$£¬Òò´Ëº¯Êýy=$\frac{1}{x}$²»ÊǦκ¯Êý¡±£»
£¨2£©ÉèÒ»ÌõÖ±ÏßlÓ뺯Êýy=x2£¨x£¾0£©µÄͼÏóÓÐÁ½¸ö²»Í¬½»µãP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©µÄÖ±Ïߣ¬Ôòkl=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=2x=x2+x1£¬
¡ßy¡ä=2x£¬
¡ày=f£¨x£©ÔÚx=$\frac{{x}_{1}+{x}_{2}}{2}$´¦µÄÇÐÏßµÄбÂÊk=f¡ä£¨$\frac{{x}_{1}+{x}_{2}}{2}$£©=2¡Á$\frac{{x}_{1}+{x}_{2}}{2}$=x1+x2£¬
¡à´æÔÚÒ»ÌõÖ±ÏßlÓ뺯Êýy=f£¨x£©µÄͼÏóÓÐÁ½¸ö²»Í¬½»µãP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©µÄÖ±Ïߣ¬Ê¹y=f£¨x£©ÔÚx=$\frac{{x}_{1}+{x}_{2}}{2}$´¦µÄÇÐÏßÓë´ËÖ±Ï߯½ÐУ¬
Òò´Ëº¯Êýy=x2Ϊ¦Îº¯Êý£»
ͬÀí¿ÉÅж¨£º£¨3£©Îª¡°¦Îº¯Êý£»£¨4£©²»Îª¦Îº¯Êý£®
¹Ê´ð°¸Îª£º¢Ú¢Û£®
µãÆÀ ±¾Ì⿼²éÁËж¨Òå¦Îº¯Êý¡¢Ö±ÏßµÄбÂʼÆË㹫ʽ¡¢ÀûÓõ¼ÊýÑо¿º¯ÊýÇÐÏßµÄбÂÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | ¦Îȡÿ¸ö¿ÉÄÜÖµµÄ¸ÅÂÊÊǷǸºÊµÊý | |
| B£® | ¦ÎÈ¡ËùÓпÉÄÜÖµ¸ÅÂÊÖ®ºÍΪ1 | |
| C£® | ¦Îȡij2¸ö¿ÉÄÜÖµµÄ¸ÅÂʵÈÓÚ·Ö±ðÈ¡ÆäÖÐÿ¸öÖµµÄ¸ÅÂÊÖ®ºÍ | |
| D£® | ¦Îȡij2¸ö¿ÉÄÜÖµµÄ¸ÅÂÊ´óÓÚ·Ö±ðÈ¡ÆäÖÐÿ¸öÖµµÄ¸ÅÂÊÖ®ºÍ |
| A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
| C£® | ³ä·Ö±ØÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
| A£® | $£¨\frac{1}{3}£¬1£©$ | B£® | $£¨-¡Þ£¬\frac{1}{3}£©¡È£¨1£¬+¡Þ£©$ | C£® | $£¨-\frac{1}{3}£¬\frac{1}{3}£©$ | D£® | $£¨-¡Þ£¬-\frac{1}{3}£©¡È£¨\frac{1}{3}£¬+¡Þ£©$ |