ÌâÄ¿ÄÚÈÝ

1£®ÎÒÃdzÆÂú×ãÏÂÃæÌõ¼þµÄº¯Êýy=f£¨x£©Îª¡°¦Îº¯Êý¡±£º´æÔÚÒ»ÌõÓ뺯Êýy=f£¨x£©µÄͼÏóÓÐÁ½¸ö²»Í¬½»µã£¨ÉèΪP£¨x1£¬y1£©Q£¨x2£¬y2£©£©µÄÖ±Ïߣ¬y=£¨x£©ÔÚx=$\frac{{x}_{1}+{x}_{2}}{2}$´¦µÄÇÐÏßÓë´ËÖ±Ï߯½ÐУ®ÏÂÁк¯Êý£º
¢Ùy=$\frac{1}{x}$        ¢Úy=x2£¨x£¾0£©¢Ûy=$\sqrt{1-{x}^{2}}$       ¢Üy=lnx£¬
ÆäÖÐΪ¡°¦Îº¯Êý¡±µÄÊÇ¢Ú¢Û £¨½«ËùÓÐÄãÈÏΪÕýÈ·µÄÐòºÅÌîÔÚºáÏßÉÏ£©

·ÖÎö ÀûÓõ¼ÊýµÄ¼¸ºÎÒâÒ壬·Ö±ðÅжÏËĸöº¯ÊýÇóÔÚx=$\frac{{x}_{1}+{x}_{2}}{2}$´¦µÄÇÐÏßбÂÊÓëµ¼ÊýÖµÊÇ·ñÏàµÈ¼´¿É£®

½â´ð ½â£º£¨1£©ÉèÒ»ÌõÖ±ÏßlÓ뺯Êýy=$\frac{1}{x}$µÄͼÏóÓÐÁ½¸ö²»Í¬½»µãP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¨x1¡Ùx2£©µÄÖ±Ïߣ¬¿ÉµÃkl=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=-$\frac{1}{{x}_{1}{x}_{2}}$£®ÓÉÓÚy¡ä=-$\frac{1}{{x}^{2}}$£¬¿ÉµÃy=f£¨x£©ÔÚx=$\frac{{x}_{1}+{x}_{2}}{2}$´¦ÇÐÏßµÄбÂÊk=f¡ä£¨ $\frac{{x}_{1}+{x}_{2}}{2}$£©=-$\frac{4}{£¨{x}_{1}+{x}_{2}£©^{2}}$£¬¿ÉµÃ-$\frac{1}{{x}_{1}{x}_{2}}$¡Ù-$\frac{4}{£¨{x}_{1}+{x}_{2}£©^{2}}$£¬Òò´Ëº¯Êýy=$\frac{1}{x}$²»ÊǦκ¯Êý¡±£»
£¨2£©ÉèÒ»ÌõÖ±ÏßlÓ뺯Êýy=x2£¨x£¾0£©µÄͼÏóÓÐÁ½¸ö²»Í¬½»µãP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©µÄÖ±Ïߣ¬Ôòkl=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=2x=x2+x1£¬
¡ßy¡ä=2x£¬
¡ày=f£¨x£©ÔÚx=$\frac{{x}_{1}+{x}_{2}}{2}$´¦µÄÇÐÏßµÄбÂÊk=f¡ä£¨$\frac{{x}_{1}+{x}_{2}}{2}$£©=2¡Á$\frac{{x}_{1}+{x}_{2}}{2}$=x1+x2£¬
¡à´æÔÚÒ»ÌõÖ±ÏßlÓ뺯Êýy=f£¨x£©µÄͼÏóÓÐÁ½¸ö²»Í¬½»µãP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©µÄÖ±Ïߣ¬Ê¹y=f£¨x£©ÔÚx=$\frac{{x}_{1}+{x}_{2}}{2}$´¦µÄÇÐÏßÓë´ËÖ±Ï߯½ÐУ¬
Òò´Ëº¯Êýy=x2Ϊ¦Îº¯Êý£»
ͬÀí¿ÉÅж¨£º£¨3£©Îª¡°¦Îº¯Êý£»£¨4£©²»Îª¦Îº¯Êý£®
¹Ê´ð°¸Îª£º¢Ú¢Û£®

µãÆÀ ±¾Ì⿼²éÁËж¨Òå¦Îº¯Êý¡¢Ö±ÏßµÄбÂʼÆË㹫ʽ¡¢ÀûÓõ¼ÊýÑо¿º¯ÊýÇÐÏßµÄбÂÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø