题目内容
如图,
是圆
的直径,点
是圆
上异于
的点,直线
分别为
的中点。

(1)记平面
与平面
的交线为
,试判断
与平面
的位置关系,并加以说明;
(2)设(1)中的直线
与圆
的另一个交点为
,且点
满足
,记直线
平面
所成的角为
异面直线
与
所成的锐角为
,二面角
的大小为
①求证:
②当点
为弧
的中点时,
,求直线
与平面
所成的角的正弦值。
(1)记平面
(2)设(1)中的直线
平面
①求证:
②当点
(1)直线
∥平面
(2)①详见解析②
试题分析:(1)
试题解析:
解(1)直线
(2)①证明:如图,
连接
已知
从而四边形
于是在
从而
②因为
过点C作CG⊥BF,垂足为G,因为
故
练习册系列答案
相关题目