题目内容

2.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的数学期望为2,则$\frac{2}{a}+\frac{1}{3b}$的最小值为(  )
A.$\frac{32}{3}$B.$\frac{28}{3}$C.$\frac{16}{3}$D.4

分析 由题意可得:3a+2b+0•c=2,即3a+2b=2.a,b,c∈(0,1)),再利用“乘1法”与基本不等式的性质即可得出.

解答 解:由题意可得:3a+2b+0•c=2,即3a+2b=2.a,b,c∈(0,1)),
∴$\frac{2}{a}+\frac{1}{3b}$=$\frac{1}{2}(3a+2b)$$(\frac{2}{a}+\frac{1}{3b})$=$\frac{1}{2}(\frac{20}{3}+\frac{4b}{a}+\frac{a}{b})$$≥\frac{1}{2}$$(\frac{20}{3}+2\sqrt{\frac{4b}{a}•\frac{a}{b}})$=$\frac{16}{3}$,当且仅当a=2b=$\frac{1}{2}$时取等号.
故选:C.

点评 本题考查了数学期望计算公式、“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网