题目内容
15.分析 取PB的中点O,推导出O为外接球的球心,从而得到外接球半径R=$\frac{\sqrt{6}}{2}$,由此能求出结果.
解答 解:取PB的中点O,∵PA⊥平面ABC,![]()
∴PA⊥AB,PA⊥BC,
又BC⊥AC,PC∩AC=A,∴BC⊥平面PAC,
∴BC⊥PC,∴OA=$\frac{1}{2}PB$,OC=$\frac{1}{2}$PB,
∴OA=OB=OC=OP,
∴O为外接球的球心,
又PA=2,AC=BC=1,
∴AB=$\sqrt{2}$,PB=$\sqrt{6}$,
∴外接球半径R=$\frac{\sqrt{6}}{2}$,
∴${V}_{球}=\frac{4}{3}π{R}^{3}=\frac{4}{3}π×(\frac{\sqrt{6}}{2})^{3}$=$\sqrt{6}$π.
故答案为:$\sqrt{6}π$.
点评 本题考查三棱锥外接球的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目
3.某校在高二年级实行选课走班教学,学校为学生提供了多种课程,其中数学科提供5种不同层次的课程,分别称为数学1、数学2、数学3、数学4、数学5,每个学生只能从这5种数学课程中选择一种学习,该校高二年级1800名学生的数学选课人数统计如表:
为了了解数学成绩与学生选课情况之间的关系,用分层抽样的方法从这1800名学生中抽取了10人进行分析.
(1)从选出的10名学生中随机抽取3人,求这3人中至少有2人选择数学2的概率;
(2)从选出的10名学生中随机抽取3人,记这3人中选择数学2的人数为X,选择数学1的人数为Y,设随机变量ξ=X-Y,求随机变量ξ的分布列和数学期望E(ξ).
| 课程 | 数学1 | 数学2 | 数学3 | 数学4 | 数学5 | 合计 |
| 选课人数 | 180 | 540 | 540 | 360 | 180 | 1800 |
(1)从选出的10名学生中随机抽取3人,求这3人中至少有2人选择数学2的概率;
(2)从选出的10名学生中随机抽取3人,记这3人中选择数学2的人数为X,选择数学1的人数为Y,设随机变量ξ=X-Y,求随机变量ξ的分布列和数学期望E(ξ).