ÌâÄ¿ÄÚÈÝ
2£®£¨1£©¸ù¾ÝÒÑÖªÌõ¼þÍê³ÉÏÂÃæµÄ2¡Á2ÁÐÁª±í£¬²¢¾Ý´Ë×ÊÁÏÄãÊÇ·ñÈÏΪ¡°ÉÏÍøÃÔ¡°ÓëÐÔ±ðÓйأ¿
| ·ÇÉÏÍøÃÔ | ÉÏÍøÃÔ | ºÏ¼Æ | |
| ÄÐ | |||
| Å® | 10 | 55 | |
| ºÏ¼Æ |
¸½£ºX2=$\frac{n£¨{n}_{11}{n}_{22}-{n}_{12}{n}_{21}£©^{2}}{£¨{n}_{11}+{n}_{12}£©£¨{n}_{21}+{n}_{22}£©£¨{n}_{11}+{n}_{21}£©£¨{n}_{12}+{n}_{22}£©}$£¬
| P£¨X2¡Ýk£© | 0.05 | 0.01 |
| k | 3.841 | 6.635 |
·ÖÎö £¨1£©¸ù¾ÝËù¸øµÄƵÂÊ·Ö²¼Ö±·½Í¼µÃ³öÊý¾ÝÁгöÁÐÁª±í£¬ÔÙ´úÈ빫ʽ¼ÆËãµÃ³öK2£¬Óë3.841±È½Ï¼´¿ÉµÃ³ö½áÂÛ£»
£¨2£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼Öª³éµ½¡°ÉÏÍøÃÔ¡±µÄƵÂÊΪ0.25£¬½«ÆµÂÊÊÓΪ¸ÅÂÊ£¬¼´´Ó¹ÛÖÚÖгéȡһÃû¡°ÉÏÍøÃÔ¡±µÄ¸ÅÂÊΪ$\frac{1}{4}$£¬¿ÉµÃ½áÂÛ£®
½â´ð ½â£º£¨1£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼¿ÉÖª£¬ÔÚ³éÈ¡µÄ100ÈËÖУ¬¡°ÉÏÍøÃÔ¡±ÓÐ25ÈË£¬´Ó¶ø2¡Á2ÁÐÁª±íÈçÏ£º
| ·ÇÉÏÍøÃÔ | ÉÏÍøÃÔ | ºÏ¼Æ | |
| ÄÐ | 30 | 15 | 45 |
| Å® | 45 | 10 | 55 |
| ºÏ¼Æ | 75 | 25 | 100 |
ÒòΪ3.030£¼3.841£¬ËùÒÔûÓÐÀíÓÉÈÏΪ¡°ÉÏÍøÃÔ¡±ÓëÐÔ±ðÓйأ®
£¨2£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼Öª³éµ½¡°ÉÏÍøÃÔ¡±µÄƵÂÊΪ0.25£¬½«ÆµÂÊÊÓΪ¸ÅÂÊ£¬¼´´Ó¹ÛÖÚÖгéȡһÃû¡°ÉÏÍøÃÔ¡±µÄ¸ÅÂÊΪ$\frac{1}{4}$£®Ôò$P£¨X=2£©=\frac{9}{64}$£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éƵÂÊ·Ö²¼Ö±·½Í¼µÄÓ¦ÓᢶÀÁ¢ÐÔ¼ìÑé¡¢¸ÅÂʼÆË㣬¿¼²éÔËÓÃËùѧ֪ʶ½â¾öʵ¼ÊÎÊÌâÄÜÁ¦£¬ÊÇÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
10£®ÄþÏÄ2011ÄêÆðÿÄê¾Ù°ìÒ»½ìÂÃÓνڣ¬µ½2016ÄêÒѾٰìÁËÁù½ì£¬ÂÃÓβ¿ÃÅͳ¼ÆÔÚÿ½ìÂÃÓÎ½ÚÆÚ¼ä£¬ÎüÒýÁ˲»ÉÙÍâµØÓο͵½ÄþÏÄ£¬Õ⽫¼«´óµØÍƽøÄþÏĵÄÂÃÓÎÒµµÄ·¢Õ¹£¬ÏÖ½«Ç°Îå½ìÂÃÓÎ½ÚÆÚ¼äÍâµØÓο͵½ÄþÏĵÄÈËÊýͳ¼ÆÈçÏÂ±í£º
£¨1£©Çóy¹ØÓÚxµÄÏßÐԻع鷽³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$£»
$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$
£¨2£©ÀûÓã¨1£©ÖеÄÏßÐԻع鷽³Ì£¬Ô¤²â17ÄêµÚ7½ìÂÃÓÎ½ÚÆÚ¼äÍâµØÓο͵½ÄþÏĵÄÈËÊý£®
| Äê·Ý | 11Äê | 12Äê | 13Äê | 14Äê | 15Äê |
| ÂÃÓνڽì±àºÅx | 1 | 2 | 3 | 4 | 5 |
| ÍâµØÓοÍÈËÊýy£¨µ¥Î»£ºÊ®Íò£© | 0.6 | 0.8 | 0.9 | 1.2 | 1.5 |
$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$
£¨2£©ÀûÓã¨1£©ÖеÄÏßÐԻع鷽³Ì£¬Ô¤²â17ÄêµÚ7½ìÂÃÓÎ½ÚÆÚ¼äÍâµØÓο͵½ÄþÏĵÄÈËÊý£®
7£®ÔÚÍ¬Ò»×ø±êϵÖУ¬½«ÇúÏßy=2sin3x±äΪÇúÏßy'=sinx'µÄÉìËõ±ä»»ÊÇ£¨¡¡¡¡£©
| A£® | $\left\{{\begin{array}{l}{x=3x'}\\{y=\frac{1}{2}y'}\end{array}}\right.$ | B£® | $\left\{{\begin{array}{l}{x'=3x}\\{y'=\frac{1}{2}y}\end{array}}\right.$ | C£® | $\left\{{\begin{array}{l}{x=3x'}\\{y=2y'}\end{array}}\right.$ | D£® | $\left\{{\begin{array}{l}{x'=3x}\\{y'=2y}\end{array}}\right.$ |
14£®¦ØÊÇÕýʵÊý£¬º¯Êýf£¨x£©=2cos¦ØxÔÚx¡Ê$[{0£¬\frac{2¦Ð}{3}}]$ÉÏÊǼõº¯Êý£¬ÇÒÓÐ×îСֵ1£¬ÄÇô¦ØµÄÖµ¿ÉÒÔÊÇ£¨¡¡¡¡£©
| A£® | 2 | B£® | $\frac{1}{2}$ | C£® | $\frac{1}{3}$ | D£® | 3 |