题目内容

1.有一个底面圆的半径为1,高为2的圆柱,点O1,O2分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P,则点P到点O1,O2的距离都大于1的概率为$\frac{1}{3}$.

分析 本题利用几何概型求解.先根据到点的距离等于1的点构成图象特征,求出其体积,最后利用体积比即可得点P到点O1,O2的距离都大于1的概率

解答 解:∵到点O1的距离等于1的点构成一个半个球面,到点O2的距离等于1的点构成一个半个球面,两个半球构成一个整球,如图,
点P到点O1,O2的距离都大于1的概率为:
P=$\frac{球外的体积}{圆柱体积}$=$\frac{圆柱体积-球体积}{圆柱体积}$=1-$\frac{\frac{4}{3}π×{1}^{3}}{π×{1}^{2}×2}$=$\frac{1}{3}$;
故答案为:$\frac{1}{3}$

点评 本小题主要考查几何概型、圆柱和球的体积等基础知识,考查运算求解能力,考查空间想象力、化归与转化思想.关键是明确满足题意的测度为体积比.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网