题目内容
6.在等差数列46,43,40,37,…中第一个负数项是( )| A. | 第15项 | B. | 第16项 | C. | 第17项 | D. | 第18项 |
分析 利用等差数列的通项公式即可得出.
解答 解:由等差数列46,43,40,37,…,
可得首项a1=46,公差d=43-46=-3.
∴an=46-3(n-1)=49-3n,
令an<0,解得$n>\frac{49}{3}$=16+$\frac{1}{3}$.
因此等差数列46,43,40,37,…中第一个负数项是第17项.
故选:C.
点评 本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
17.探究函数f(x)=2x+$\frac{8}{x}$,x∈(0,+∞)最小值,并确定取得最小值时x的值.列表如下:
请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数f(x)=2x+$\frac{8}{x}$(x>0)在区间(0,2)上递减;函数f(x)=2x+$\frac{8}{x}$(x>0)在区间(2,+∞)上递增.当x=2时,y最小=8.
(2)证明:函数f(x)=2x+$\frac{8}{x}$(x>0)在区间(0,2)递减.
(3)思考:函数f(x)=2x+$\frac{8}{x}$(x<0)时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)
| x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
| y | … | 17 | 10 | 8.34 | 8.1 | 8.01 | 8 | 8.01 | 8.04 | 8.08 | 8.6 | 10 | 11.6 | 15.14 | … |
(1)函数f(x)=2x+$\frac{8}{x}$(x>0)在区间(0,2)上递减;函数f(x)=2x+$\frac{8}{x}$(x>0)在区间(2,+∞)上递增.当x=2时,y最小=8.
(2)证明:函数f(x)=2x+$\frac{8}{x}$(x>0)在区间(0,2)递减.
(3)思考:函数f(x)=2x+$\frac{8}{x}$(x<0)时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)
11.已知函数f(x)=$\frac{1}{2}$x2-2ax+blnx+2a2在x=1处取得极值$\frac{1}{2}$,则a+b=( )
| A. | -1 | B. | 2 | C. | -1或1 | D. | -1或2 |
18.下列命题中:
①“?x0∈R,x02-x0+1≤0”的否定;
②“若x2+x-6≥0,则x>2”的否命题;
③命题“若x2-5x+6=0,则x=2”的逆否命题;
其中真命题的个数是( )
①“?x0∈R,x02-x0+1≤0”的否定;
②“若x2+x-6≥0,则x>2”的否命题;
③命题“若x2-5x+6=0,则x=2”的逆否命题;
其中真命题的个数是( )
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
15.已知集合M={x|mx2+2x+m=0,m∈R]中有且只有一个元素的所有m的值组成的集合为N,则N为( )
| A. | {-1,1} | B. | {0,1] | C. | {-1,0,1} | D. | N⊆{-2,-1,0,2} |
16.若定义域为R的函数f(x)在(4,+∞)上为减函数,且f(4+x)=f(4-x),对任意实数x都成立,则( )
| A. | f(2)>f(3) | B. | f(2)>f(5) | C. | f(3)>f(5) | D. | f(3)>f(6) |