题目内容
16.已知向量$\overrightarrow a$=(1,-2),$\overrightarrow b$=(x,4),且$\overrightarrow a$∥$\overrightarrow b$,则|$\overrightarrow a$+$\overrightarrow b$|=( )| A. | $\sqrt{5}$ | B. | 5 | C. | $\sqrt{85}$ | D. | $\sqrt{13}$ |
分析 利用向量共线求出x,然后求解向量的模.
解答 解:向量$\overrightarrow a$=(1,-2),$\overrightarrow b$=(x,4),且$\overrightarrow a$∥$\overrightarrow b$,
可得-2x=4,解得x=-2,
|$\overrightarrow a$+$\overrightarrow b$|=$\sqrt{(1-2)^{2}+(-2+4)^{2}}$=$\sqrt{5}$.
故选:A.
点评 本题考查向量共线的充要条件以及向量的模的求法,考查计算能力.
练习册系列答案
相关题目
7.下列程序框图对应的函数是( )

| A. | f(x)=x | B. | f(x)=-x | C. | f(x)=|x| | D. | f(x)=-|x| |
4.若不等式组$\left\{\begin{array}{l}{x-y≥0}\\{2x+y≤2}\\{y≥0}\\{x+y≤a}\end{array}\right.$,表示的平面区域是一个三角形区域,则a的取值范围是( )
| A. | a≥$\frac{4}{3}$ | B. | 0<a≤1 | C. | 1≤a≤$\frac{4}{3}$ | D. | 0<a≤1或a≥$\frac{4}{3}$ |
11.某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如表:
该公司从注册的会员中,随机抽取了100位进行统计,得到统计数据如表:
假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题:
(1)估计该公司一位会员至少消费两次的概率;
(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(3)以事件发生的频率作为相应事件发生的概率,设该公司为一位会员服务的平均利润为X元,求X的分布列和数学期望E(X).
| 消费次第 | 第1次 | 第2次 | 第3次 | 第4次 | ≥5次 |
| 收费比例 | 1 | 0.95 | 0.90 | 0.85 | 0.80 |
| 消费次第 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
| 频数 | 60 | 20 | 10 | 5 | 5 |
(1)估计该公司一位会员至少消费两次的概率;
(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(3)以事件发生的频率作为相应事件发生的概率,设该公司为一位会员服务的平均利润为X元,求X的分布列和数学期望E(X).
5.下列命题中正确的是( )
| A. | 用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台 | |
| B. | 有两个面平行,其他面都是平行四边形的几何体叫棱柱 | |
| C. | 棱台的底面是两个相似的正方形 | |
| D. | 棱台的侧棱延长后必交于一点 |
6.已知直线l经过两个点A(0,4),B(3,0),则直线l的方程为( )
| A. | 4x+3y-12=0 | B. | 3x+4y-12=0 | C. | 4x+3y+12=0 | D. | 3x+4y+12=0 |