题目内容
19.平面向量$\overrightarrow a$与$\overrightarrow b$的夹角为90°,$\overrightarrow a=({2,0}),|{\overrightarrow b}|=1$则$|{\overrightarrow a+2\overrightarrow b}|$=2$\sqrt{2}$.分析 由已知可得$\overrightarrow a$•$\overrightarrow b$=0,结合$\overrightarrow a=({2,0}),|{\overrightarrow b}|=1$,利用平方法,可得答案.
解答 解:∵平面向量$\overrightarrow a$与$\overrightarrow b$的夹角为90°,
∴$\overrightarrow a$•$\overrightarrow b$=0,
又∵$\overrightarrow a=({2,0}),|{\overrightarrow b}|=1$,
∴$|{\overrightarrow a+2\overrightarrow b}|$2=${{\overrightarrow{a}}^{2}+4\overrightarrow{a}•\overrightarrow{b}+4\overrightarrow{b}}^{2}$=4+4=8,
∴$|{\overrightarrow a+2\overrightarrow b}|$=2$\sqrt{2}$,
故答案为:2$\sqrt{2}$
点评 本题考查的知识点是向量的数量积运算,向量的模,难度中档.
练习册系列答案
相关题目
10.已知x,y都是实数,命题p:|x|<1;命题q:x2-2x-3<0,则p是q的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分又不必要条件 |
7.
函数f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,将f(x)的图象向左平移$\frac{π}{6}$个单位后的解析式为( )
| A. | y=2sin(2x-$\frac{π}{6}$) | B. | y=2sin(2x+$\frac{π}{6}$) | C. | y=2sin(2x) | D. | y=2sin(2x+$\frac{π}{3}$) |
11.
某市文化部门为了了解本市市民对当地地方戏曲是否喜爱,从15-65岁的人群中随机抽样了n人,得到如下的统计表和频率分布直方图.
(Ⅰ)写出其中的a、b及x和y的值;
(Ⅱ)若从第1,2,3组回答喜欢地方戏曲的人中用分层抽样的方法抽取6人,求这三组每组分别抽取多少人?
(Ⅲ)在(Ⅱ)抽取的6人中随机抽取2人,求这2人中没有第3组人的概率.
(Ⅰ)写出其中的a、b及x和y的值;
(Ⅱ)若从第1,2,3组回答喜欢地方戏曲的人中用分层抽样的方法抽取6人,求这三组每组分别抽取多少人?
(Ⅲ)在(Ⅱ)抽取的6人中随机抽取2人,求这2人中没有第3组人的概率.
| 组号 | 分组 | 喜爱人数 | 喜爱人数 占本组的频率 |
| 第1组 | [15,25) | a | 0.10 |
| 第2组 | [25,35) | b | 0.20 |
| 第3组 | [35,45) | 6 | 0.20 |
| 第4组 | [45,55) | 12 | 0.60 |
| 第5组 | [55,65] | 20 | 0.40 |
9.已知函数f(x)=sin(πx+$\frac{π}{4}$)和函数g(x)=cos(πx+$\frac{π}{4}$)在区间[-$\frac{5}{4}$,$\frac{7}{4}$]上的图象交于A,B,C三点,则△ABC的面积是( )
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{3\sqrt{2}}{4}$ | C. | $\sqrt{2}$ | D. | $\frac{5\sqrt{2}}{4}$ |