题目内容

13.函数f(x)=4x-cosx,{an}是公差为$\frac{π}{2016}$的等差数列,f(a1)+f(a1009)+f(a2017)+f(a3025)+f(a4033)=10π,则f(a2017)+a1+a4033=3π.

分析 由已知得a1=-$\frac{π}{2}$,利用f(a2017)+a1+a4033=4a2017-cosa2017+2a2017=6a2017-cosa2017=6a2017+cosa1,即可得出结论.

解答 解:∵f(x)=4x-cosx,{an}是公差为$\frac{π}{2016}$的等差数列,f(a1)+f(a1009)+f(a2017)+f(a3025)+f(a4033)=10π,
∴f(a1)+f(a1009)+f(a2017)+f(a3025)+f(a4033)=4(a1+a1009+a2017+a3025+a4033)-(cosa1+cosa1009+cosa2017+cosa3025+cosa4033
=20a2017-(cosa1-sina1-cosa1+sina1+cosa1
=20a2017-cosa1=10π,
∴20a2017=cosa1+10π,
∴20a1+20π=cosa1+10π,
∴20a1=cosa1-10π,
∴a1=-$\frac{π}{2}$,
∴f(a2017)+a1+a4033=4a2017-cosa2017+2a2017=6a2017-cosa2017=6a2017+cosa1=6(a1+π)=3π.
故答案为:3π.

点评 本题考查数列与三角函数的综合,继而求得a1是关键,也是难点,考查分析,推理与计算能力,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网