题目内容
5.与抛物线y=2x2关于直线y=x对称的抛物线的准线方程为( )| A. | $x=\frac{1}{8}$ | B. | $x=\frac{1}{2}$ | C. | $x=-\frac{1}{8}$ | D. | $x=-\frac{1}{2}$ |
分析 求得抛物线的标准方程,根据函数的对称性求得关于关于直线y=x对称的抛物线的标准方程y2=$\frac{1}{2}$x,即可求得抛物线的准线方程.
解答 解:抛物线y=2x2的标准方程x2=$\frac{1}{2}$y,
则关于直线y=x对称的抛物线的标准方程y2=$\frac{1}{2}$x,
则抛物线的焦点在x轴的正半轴,2p=$\frac{1}{2}$,$\frac{p}{2}$=$\frac{1}{8}$,
∴抛物线的准线方程x=-$\frac{1}{8}$,
故选C.
点评 本题考查抛物线的标准方程及简单几何性质,曲线的对称性,考查计算能力,属于基础题.
练习册系列答案
相关题目
16.已知A、B是圆O:x2+y2=16的两个动点,|$\overrightarrow{AB}$|=4,$\overrightarrow{OC}$=$\frac{5}{3}$$\overrightarrow{OA}$-$\frac{2}{3}$$\overrightarrow{OB}$.若M是线段AB的中点,则$\overrightarrow{OC}$•$\overrightarrow{OM}$的值为( )
| A. | 8+4$\sqrt{3}$ | B. | 8-4$\sqrt{3}$ | C. | 12 | D. | 4 |
20.某市政协课题组成员为了解中学生的身体素质情况,决定在该市高二的14400名男生和9600名女生中按分层抽样的方法抽取30名学生,对他们课余参加体育锻炼时间进行问卷调查,将学生课余参加体育锻炼时间的情况分三类:A类(课余不参加体育锻炼),B类(课余参加体育锻炼但平均每周参加体育锻炼的时间不超过3小时),C类(课余参加体育锻炼且平均每周参加体育锻炼的时间超过3小时),调查结果如表:
(1)求出表中x、y的值;
(2)根据表格统计数据,完成下面的列联表,并判断是否有90%的把握认为“课余不参加体育锻炼“与性别有关;
(3)从抽出的女生中再抽取3人进一步了解情况,记X为抽取的这3名女生中A类人数和C类人数差的绝对值,求X的均值(即数学期望).
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
| A类 | B类 | C类 | |
| 男生 | 5 | x | 5 |
| 女生 | y | 5 | 3 |
(2)根据表格统计数据,完成下面的列联表,并判断是否有90%的把握认为“课余不参加体育锻炼“与性别有关;
| 男生 | 女生 | 总计 | |
| 课余不参加体育锻炼 | |||
| 课余参加体育锻炼 | |||
| 总计 |
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
| P(K2≥k0) | 0.10 | 0.05 | 0.01 |
| k0 | 2.706 | 3.841 | 6.635 |
10.已知函数f(x)=$\left\{{\begin{array}{l}{lnx,x>0}\\{\frac{m}{x},x<0}\end{array}}$,若f(x)-f(-x)=0有四个不同的根,则m的取值范围是( )
| A. | (0,2e) | B. | (0,e) | C. | (0,1) | D. | (0,$\frac{1}{e}$) |