ÌâÄ¿ÄÚÈÝ
5£®¹ýË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÓÒ½¹µãF×÷бÂÊΪ-1µÄÖ±Ïߣ¬ÇÒlÓë´ËË«ÇúÏßµÄÁ½Ìõ½¥½üÏߵĽ»µã·Ö±ðΪB£¬C£¬Èô$\overrightarrow{FB}$=$\frac{1}{3}$$\overrightarrow{BC}$£¬Ôò´ËË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©| A£® | $\frac{\sqrt{34}}{3}$ | B£® | 2 | C£® | $\sqrt{5}$ | D£® | $\frac{\sqrt{34}}{5}$ |
·ÖÎö Éè³ö¹ý½¹µãµÄÖ±Ïß·½³Ì£¬ÓëË«ÇúÏߵĽ¥½üÏß·½³ÌÁªÁ¢°ÑB£¬C±íʾ³öÀ´£¬ÔÙÓÉÏòÁ¿¹²ÏßµÄ×ø±ê±íʾ£¬Çó³öb£¬cÓëaµÄ¹ØÏµ£¬¼´¿ÉÇóË«ÇúÏßµÄÀëÐÄÂÊ£®
½â´ð ½â£ºÉèÓÒ½¹µãΪF£¨c£¬0£©£¬
¹ýË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÓÒ½¹µãF×÷бÂÊΪ-1µÄÖ±ÏßΪ£ºy=-x+c£¬
½¥½üÏߵķ½³ÌÊÇ£ºy=¡À$\frac{b}{a}$x£¬
ÓÉ$\left\{\begin{array}{l}{y=-x+c}\\{y=\frac{b}{a}x}\end{array}\right.$µÃ£ºB£¨$\frac{ac}{a+b}$£¬$\frac{bc}{a+b}$£©£¬
ÓÉ$\left\{\begin{array}{l}{y=c-x}\\{y=-\frac{b}{a}x}\end{array}\right.$µÃ£¬C£¨$\frac{ac}{a-b}$£¬-$\frac{bc}{a-b}$£©£¬
ËùÒÔ$\overrightarrow{FB}$=£¨$\frac{ac}{a+b}$-c£¬$\frac{bc}{a+b}$£©=£¨$\frac{-bc}{a+b}$£¬$\frac{bc}{a+b}$£©£¬
$\overrightarrow{BC}$=£¨$\frac{ac}{a-b}$-$\frac{ac}{a+b}$£¬-$\frac{bc}{a-b}$-$\frac{bc}{a+b}$£©=£¨$\frac{2abc}{{a}^{2}-{b}^{2}}$£¬-$\frac{2abc}{{a}^{2}-{b}^{2}}$£©£¬
ÓÖ $\overrightarrow{FB}$=$\frac{1}{3}$$\overrightarrow{BC}$£¬¼´ÓÐ$\frac{-bc}{a+b}$=$\frac{1}{3}$•$\frac{2abc}{{a}^{2}-{b}^{2}}$£¬
»¯¼ò¿ÉµÃb=$\frac{5}{3}$a£¬
ÓÉa2+b2=c2µÃ£¬$\frac{34}{9}$a2=c2£¬
ËùÒÔe=$\frac{c}{a}$=$\frac{\sqrt{34}}{3}$£®
¹ÊÑ¡£ºA£®
µãÆÀ ±¾Ì⿼²éË«ÇúÏßµÄÐÔÖʺÍÓ¦Óã¬Ö÷Òª¿¼²éÀëÐÄÂʵÄÇ󷨣¬Í¬Ê±¿¼²éÏòÁ¿¹²ÏßµÄ×ø±ê±íʾ£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | 32 | B£® | -32 | C£® | 0 | D£® | 1 |
| A£® | 4¦Ð | B£® | 2¦Ð | C£® | ¦Ð | D£® | $\frac{¦Ð}{2}$ |
| A£® | ∅ | B£® | {x|x£¼0} | C£® | {x|x£¼2} | D£® | {x|0£¼x£¼2} |
| A£® | f£¨x£©µÄ×îСÕýÖÜÆÚΪ$\frac{¦Ð}{2}$ | |
| B£® | f£¨x£©ÊÇżº¯Êý | |
| C£® | f£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßx=$\frac{k¦Ð}{2}$£¨k¡ÊZ£©¶Ô³Æ | |
| D£® | f£¨x£©ÔÚÿһ¸öÇø¼ä£¨k¦Ð£¬k¦Ð+$\frac{¦Ð}{2}$£©£¨k¡ÊZ£©ÄÚµ¥µ÷µÝÔö |