题目内容
10.已知集合M={x|x<2},N={x|x>0},则M∩N=( )| A. | ∅ | B. | {x|x<0} | C. | {x|x<2} | D. | {x|0<x<2} |
分析 借助交集的定义,求集合M,N的交集即可
解答 解:集合M={x|x<2},N={x|x>0},则M∩N={x|0<x<2},
故选:D.
点评 本题考查交集及其运算,考查计算能力,是基础题.
练习册系列答案
相关题目
4.已知数列{an}的前n项和Sn=n2-n,若17<an<20,则n=( )
| A. | 9 | B. | 10 | C. | 11 | D. | 12 |
5.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作斜率为-1的直线,且l与此双曲线的两条渐近线的交点分别为B,C,若$\overrightarrow{FB}$=$\frac{1}{3}$$\overrightarrow{BC}$,则此双曲线的离心率为( )
| A. | $\frac{\sqrt{34}}{3}$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\frac{\sqrt{34}}{5}$ |
15.已知$sin(x-\frac{9π}{14})cos\frac{π}{7}+cos(x-\frac{9π}{14})sin\frac{π}{7}=\frac{1}{3}$,则cosx等于( )
| A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | $\frac{{2\sqrt{2}}}{3}$ | D. | $±\frac{{2\sqrt{2}}}{3}$ |
20.将函数f(x)=sin(2x+φ)+$\sqrt{3}$cos(2x+φ )(0<φ<π)的图象向左平移$\frac{π}{4}$个单位后,得到函数的图象关于点{$\frac{π}{2}$,0}对称,则φ等于( )
| A. | -$\frac{π}{6}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |