ÌâÄ¿ÄÚÈÝ
6£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨$\frac{1}{2}$£¬$\frac{\sqrt{3}}{2}$cos¦Øx£©£¬$\overrightarrow{b}$=£¨2+cos2¦Øx£¬sin¦Øx£©£¨¦Ø£¾0£©£¬º¯Êýf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$ÔÚÇø¼ä[m£¬n]Éϵ¥µ÷£¬ÇÒ|m-n|µÄ×î´óÖµÊÇ$\frac{¦Ð}{2}$£®Ôòf£¨$\frac{¦Ð}{2}$£©=£¨¡¡¡¡£©| A£® | 2 | B£® | $\frac{7}{4}$ | C£® | $\frac{5}{4}$ | D£® | 1 |
·ÖÎö ÀûÓÃÊýÁ¿»ý¹«Ê½µÃ³öf£¨x£©½âÎöʽ£¬ÀûÓÃÈý½ÇºãµÈ±ä»»»¯¼ò£¬¸ù¾ÝÕýÏÒº¯ÊýµÄÐÔÖÊÇó³ö¦Ø£¬µÃµ½º¯Êý½âÎöʽ£¬Ôòf£¨$\frac{¦Ð}{2}$£©¿ÉÇó£®
½â´ð ½â£º¡ß$\overrightarrow{a}$=£¨$\frac{1}{2}$£¬$\frac{\sqrt{3}}{2}$cos¦Øx£©£¬$\overrightarrow{b}$=£¨2+cos2¦Øx£¬sin¦Øx£©£¨¦Ø£¾0£©£¬
¡àf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}¡Á£¨2+co{s}^{2}¦Øx£©+\frac{\sqrt{3}}{2}cos¦Øxsin¦Øx$
=$1+\frac{1}{2}co{s}^{2}¦Øx+\frac{\sqrt{3}}{4}sin2¦Øx$=$1+\frac{1}{4}£¨1+cos2¦Øx£©+\frac{\sqrt{3}}{4}sin2¦Øx$
=$\frac{1}{2}£¨\frac{\sqrt{3}}{2}sin2¦Øx+\frac{1}{2}cos2¦Øx£©+\frac{5}{4}$=$\frac{1}{2}sin£¨2¦Øx+\frac{¦Ð}{6}£©+\frac{5}{4}$£®
¡ßµ¥µ÷Çø¼ä[m£¬n]µÄ×î´ó³¤¶ÈΪ$\frac{¦Ð}{2}$£¬
¡àf£¨x£©µÄÖÜÆÚT=¦Ð£¬¼´$\frac{2¦Ð}{2¦Ø}$=¦Ð£¬µÃ¦Ø=1£®
¡àf£¨x£©=$\frac{1}{2}sin£¨2x+\frac{¦Ð}{6}£©$£¬
¡àf£¨$\frac{¦Ð}{2}$£©=$\frac{1}{2}sin£¨¦Ð+\frac{¦Ð}{6}£©+\frac{5}{4}=\frac{1}{2}¡Á£¨-\frac{1}{2}£©+\frac{5}{4}=1$£®
¹ÊÑ¡£ºD£®
µãÆÀ ±¾Ì⿼²éÁËÆ½ÃæÏòÁ¿µÄÊýÁ¿»ý£¬Èý½ÇºãµÈ±ä»»ÓëÕýÏÒº¯ÊýµÄͼÏóÓëÐÔÖÊ£¬ÊôÓÚÖеµÌ⣮
| A£® | 9 | B£® | 16 | C£® | 18 | D£® | 21 |
| A£® | µÚËÄÏóÏÞ½Ç | B£® | µÚÈýÏóÏÞ½Ç | C£® | µÚ¶þÏóÏÞ½Ç | D£® | µÚÒ»ÏóÏÞ½Ç |