题目内容
设f(x)=
,若f(2)=4,则a的取值范围为 .
|
考点:分段函数的应用,真题集萃
专题:分类讨论,函数的性质及应用
分析:可对a进行讨论,当a>2时,当a=2时,当a<2时,将a代入相对应的函数解析式,从而求出a的范围.
解答:
解:当a>2时,f(2)=2≠4,不合题意;
当a=2时,f(2)=22=4,符合题意;
当a<2时,f(2)=22=4,符合题意;
∴a≤2,
故答案为:(-∞,2].
当a=2时,f(2)=22=4,符合题意;
当a<2时,f(2)=22=4,符合题意;
∴a≤2,
故答案为:(-∞,2].
点评:本题考察了分段函数的应用,渗透了分类讨论思想,本题是一道基础题.
练习册系列答案
相关题目
下面几种推理是类比推理的是( )
| A、两条直线平行,同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=180° |
| B、一切偶数都能被2整除,2100是偶数,所以2100能被2整除 |
| C、某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员 |
| D、由平面三角形的性质,推测空间四边形的性质 |