题目内容

1.已知$sinβ=\frac{1}{3}\;,\;\;sin(α-β)=\frac{3}{5}$,其中α,β均为锐角.
(1)求cos2β的值;
(2)求sinα的值.

分析 (1)利用二倍角的余弦公式求出cos2β的值;
(2)由sin(α-β)=$\frac{3}{5}$求出cos(α-β)的值,再由sinβ=$\frac{1}{3}$求出cosβ的值;利用sinα=sin[(α-β)+β]求出运算结果.

解答 解:(1)∵sinβ=$\frac{1}{3}$,
∴cos2β=1-2sin2β=1-2×${(\frac{1}{3})}^{2}$=$\frac{7}{9}$;
(2)∵α、β为锐角,
∴$α-β∈({-\frac{π}{2}\;,\;\;\frac{π}{2}})$;
又sin(α-β)=$\frac{3}{5}$,
∴cos(α-β)=$\sqrt{1{-(\frac{3}{5})}^{2}}$=$\frac{4}{5}$;
又sinβ=$\frac{1}{3}$,
∴cosβ=$\sqrt{1{-(\frac{1}{3})}^{2}}$=$\frac{2\sqrt{2}}{3}$;
∴sinα=sin[(α-β)+β]
=sin(α-β)cosβ+cos(α-β)sinβ
=$\frac{3}{5}$×$\frac{2\sqrt{2}}{3}$+$\frac{4}{5}$×$\frac{1}{3}$
=$\frac{6\sqrt{2}+4}{15}$.

点评 本题考查了三角恒等变换与同角的三角函数关系应用问题,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网