题目内容

13.已知过点Q($\frac{9}{2}$,0)的直线与抛物线C:y2=4x交于两点A(x1,y1),B(x2,y2).
(Ⅰ)求证:y1y2为定值.
(Ⅱ)若△AOB的面积为$\frac{81}{4}$(O为坐标原点),求直线AB的方程.

分析 (Ⅰ)分直线与x轴垂直和不垂直分析,当直线与x轴垂直时直接求出y1y2.当不垂直时,设出直线方程,与抛物线方程联立,利用根与系数的关系可得y1y2为定值;
(Ⅱ)利用弦长公式求出AB的长度,再由点到直线的距离公式求出O到直线AB的距离,代入三角形面积公式求得k值,则直线AB的方程可求.

解答 (Ⅰ)证明:当直线AB垂直于x轴时,${y}^{2}=4×\frac{9}{2}=18$,得${y}_{1}=3\sqrt{2},{y}_{2}=-3\sqrt{2}$.
∴y1•y2=-18;
当直线AB不与x轴垂直时,设直线方程为y=k(x-$\frac{9}{2}$)(k≠0),
联立$\left\{\begin{array}{l}{y=k(x-\frac{9}{2})}\\{{y}^{2}=4x}\end{array}\right.$,得ky2-2y-18k=0.
由根与系数的关系可得:y1•y2=-18.
综上,y1y2为定值;
(Ⅱ)解:由(Ⅰ)得:${y}_{1}+{y}_{2}=\frac{2}{k},{y}_{1}{y}_{2}=-18$,
∴|AB|=$\sqrt{1+\frac{1}{{k}^{2}}}|{y}_{1}-{y}_{2}|=\sqrt{1+\frac{1}{{k}^{2}}}•\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{1+\frac{1}{{k}^{2}}}•\sqrt{\frac{4}{{k}^{2}}+72}$.
O到直线AB的距离d=$\frac{|-9k|}{\sqrt{4{k}^{2}+4}}$.
∴${S}_{△OAB}=\frac{1}{2}×\sqrt{1+\frac{1}{{k}^{2}}}•\sqrt{\frac{4}{{k}^{2}}+72}•\frac{|9k|}{2\sqrt{{k}^{2}+1}}=\frac{81}{4}$,解得k=$±\frac{2}{3}$.
∴直线AB的方程为$y=±\frac{2}{3}(x-\frac{9}{2})$,即2x+3y-9=0或2x-3y-9=0.

点评 本题考查直线与抛物线位置关系的应用,考查弦长公式的应用,体现了“设而不求”的解题思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网