题目内容
17.点A(1,a,0)和点B(1-a,2,1)的距离的最小值为$\sqrt{3}$.分析 由两点间距离公式得|AB|=$\sqrt{(1-a-1)^{2}+(2-a)^{2}+{1}^{2}}$=$\sqrt{2(a-1)^{2}+3}$,由此得到当a=1时,点A(1,a,0)和点B(1-a,2,1)的距离取最小值.
解答 解:点A(1,a,0)和点B(1-a,2,1)的距离:
|AB|=$\sqrt{(1-a-1)^{2}+(2-a)^{2}+{1}^{2}}$=$\sqrt{2{a}^{2}-4a+5}$=$\sqrt{2(a-1)^{2}+3}$,
∴当a=1时,点A(1,a,0)和点B(1-a,2,1)的距离取最小值$\sqrt{3}$.
故答案为:$\sqrt{3}$.
点评 本题考查两点间距离的最小值的求法,是基础题,解题时要认真审题,注意两点间距离公式的合理运用.
练习册系列答案
相关题目
7.设$\overrightarrow a=(-3,m),\overrightarrow b=(4,3)$,若$\overrightarrow a$与$\overrightarrow b$的夹角是钝角,则实数m的范围是( )
| A. | m>4 | B. | m<4 | C. | m<4且$m≠\frac{9}{4}$ | D. | m<4且$m≠-\frac{9}{4}$ |
8.已知□ABCD的三个顶点A(-1,-2),B(3,1),C(0,2),则顶点D的坐标为( )
| A. | (2,-3) | B. | (-1,0) | C. | (4,5) | D. | (-4,-1) |
2.已知函数f(x)=|x2+bx|(b∈R),当x∈[0,1]时,f(x)的最大值为M(b),则M(b)的最小值是( )
| A. | 3-2$\sqrt{2}$ | B. | 4-2$\sqrt{3}$ | C. | 1 | D. | 5-2$\sqrt{5}$ |
7.已知直线y=-2x+1与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)相交于A,B两点,且线段AB的中点在直线x-4y=0上,则此椭圆的离心率为( )
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |