题目内容

19.函数$f(x)={cos^2}(x-\frac{π}{12})+{sin^2}(x+\frac{π}{12})-1$是(  )
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数

分析 利用三角恒等变换化简f(x),再根据函数奇偶性的定义判断.

解答 解:f(x)=$\frac{1}{2}$[1+cos(2x-$\frac{π}{6}$)]+$\frac{1}{2}$[1-cos(2x+$\frac{π}{6}$)]-1
=$\frac{1}{2}$[cos(2x-$\frac{π}{6}$)-cos(2x+$\frac{π}{6}$)]
=$\frac{1}{2}$(2sin2xsin$\frac{π}{6}$)]=$\frac{1}{2}$sin2x,
∴f(-x)=$\frac{1}{2}$sin(-2x)=-$\frac{1}{2}$sin(2x)=-f(x),
∴f(x)是奇函数.
故选A.

点评 本题考查了三角恒等变换,函数奇偶性的判断,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网