题目内容

函数y=x2(x>0)的图象在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1( k为正整数),其中a1=16.设正整数数列{bn}满足:,当n≥2时,有
(Ⅰ)求b1,b2,b3,b4的值;
(Ⅱ)求数列{bn}的通项;
(Ⅱ)记,证明:对任意n∈N*,
解:(Ⅰ)在点(ak,ak2)处的切线方程为:y﹣ak2=2ak(x﹣ak),
当y=0时,解得,所以
又∵a1=16,
∴a2=8,a3=4,a4=2

n=2时,
由已知b1=2,b2=6,得|36﹣2a3|<1,
因为b3为正整数,所以b3=18,同理b4=54
(Ⅱ)由(Ⅰ)可猜想:bn=2·3n﹣1
证明:①n=1,2时,命题成立;
②假设当n=k﹣1与n=k(k≥2且k∈N)时成立,即bk=2·3k﹣1,bk﹣1=2·3k﹣2
于是,整理得:
由归纳假设得:
因为bk+1为正整数,所以bk+1=2·3k
即当n=k+1时命题仍成立.
综上:由知①②知对于n∈N*,有bn=2·3n﹣1成立
(Ⅲ)证明:由

③式减④式得

⑤式减⑥式得

=﹣1+2
=1+2
=
=
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网