题目内容
函数y=x2(x>0)的图象在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1( k为正整数),其中a1=16.设正整数数列{bn}满足:b1=| a1 |
| a2 |
| 1 |
| 2 |
(Ⅰ)求b1,b2,b3,b4的值;
(Ⅱ)求数列{bn}的通项;
(Ⅲ)记Tn=
| 12 |
| b1 |
| 22 |
| b2 |
| 32 |
| b3 |
| n2 |
| bn |
| 9 |
| 4 |
分析:(Ⅰ)在点(ak,ak2)处的切线方程为:y-ak2=2ak(x-ak),当y=0时,解得x=
,所以ak+1=
,由a1=16,知a2=8,a3=4,由此能推导出b1,b2,b3,b4的值.
(Ⅱ)猜想:bn=2•3n-1,再由数学归纳法进行证明.
(Ⅲ)由2Tn=1+
+
+…+
,得
Tn=
+
+…+
-
,所以
Tn=
+
+…+
-
-
,
Tn=1+
+
+…+
-
-
=2-
<2,故Tn<
.
| ak |
| 2 |
| ak |
| 2 |
(Ⅱ)猜想:bn=2•3n-1,再由数学归纳法进行证明.
(Ⅲ)由2Tn=1+
| 22 |
| 3 |
| 32 |
| 32 |
| n2 |
| 3n-1 |
| 2 |
| 3 |
| 12 |
| 3 |
| 22 |
| 32 |
| (n-1)2 |
| 3n-1 |
| n2 |
| 3n |
| 4 |
| 9 |
| 1 |
| 3 |
| 3 |
| 32 |
| 2n-3 |
| 3n-1 |
| 2n-1 |
| 3n |
| n2 |
| 3n+1 |
| 8 |
| 9 |
| 2 |
| 3 |
| 2 |
| 32 |
| 2 |
| 3n-1 |
| (n-1)2 |
| 3n |
| n2 |
| 3n+1 |
| 2(n2-3n+6) |
| 3n+1 |
| 9 |
| 4 |
解答:解:(Ⅰ)在点(ak,ak2)处的切线方程为:y-ak2=2ak(x-ak),
当y=0时,解得x=
,所以ak+1=
,
又∵a1=16,∴a2=8,a3=4,
a4=2b1=
=2,b2=a3+a4=6
n=2时,|b22-b1b3|<
b1,
由已知b1=2,b2=6,得|36-2a3|<1,
因为b3为正整数,所以b3=18,同理b4=54..(4分)
(Ⅱ)由(Ⅰ)可猜想:bn=2•3n-1(5分)
证明:①n=1,2时,命题成立;
②假设当n=k-1与n=k(k≥2且k∈N)时成立,
即bk=2•3k-1,bk-1=2•3k-2.
于是|bk2-bk-1bk+1|<
bk-1,
整理得:|
-bk+1|<
由归纳假设得:|2•3k-bk+1|<
?2•3k-
<bk+1<2•3k+
因为bk+1为正整数,所以bk+1=2•3k
即当n=k+1时命题仍成立.
综上:由知①②知对于?n∈N*,有bn=2•3n-1成立(10分)
(Ⅲ)证明:由2Tn=1+
+
+…+
③
得
Tn=
+
+…+
-
④
③式减④式得
Tn=
+
+…+
-
⑤
Tn=
+
+…+
-
-
⑥
⑤式减⑥式得
Tn=1+
+
+…+
-
-
=-1+2(1+
+
+…+
)-
+
=1+2•
=
+
=-1+3-
-
+
=2-
<2
则Tn<
.(16分)
当y=0时,解得x=
| ak |
| 2 |
| ak |
| 2 |
又∵a1=16,∴a2=8,a3=4,
a4=2b1=
| a1 |
| a2 |
n=2时,|b22-b1b3|<
| 1 |
| 2 |
由已知b1=2,b2=6,得|36-2a3|<1,
因为b3为正整数,所以b3=18,同理b4=54..(4分)
(Ⅱ)由(Ⅰ)可猜想:bn=2•3n-1(5分)
证明:①n=1,2时,命题成立;
②假设当n=k-1与n=k(k≥2且k∈N)时成立,
即bk=2•3k-1,bk-1=2•3k-2.
于是|bk2-bk-1bk+1|<
| 1 |
| 2 |
整理得:|
| bk2 |
| bk-1 |
| 1 |
| 2 |
由归纳假设得:|2•3k-bk+1|<
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
因为bk+1为正整数,所以bk+1=2•3k
即当n=k+1时命题仍成立.
综上:由知①②知对于?n∈N*,有bn=2•3n-1成立(10分)
(Ⅲ)证明:由2Tn=1+
| 22 |
| 3 |
| 32 |
| 32 |
| n2 |
| 3n-1 |
得
| 2 |
| 3 |
| 12 |
| 3 |
| 22 |
| 32 |
| (n-1)2 |
| 3n-1 |
| n2 |
| 3n |
③式减④式得
| 4 |
| 3 |
| 12 |
| 3 |
| 22 |
| 32 |
| (n-1)2 |
| 3n-1 |
| n2 |
| 3n |
| 4 |
| 9 |
| 1 |
| 3 |
| 3 |
| 32 |
| 2n-3 |
| 3n-1 |
| 2n-1 |
| 3n |
| n2 |
| 3n+1 |
⑤式减⑥式得
| 8 |
| 9 |
| 2 |
| 3 |
| 2 |
| 32 |
| 2 |
| 3n-1 |
| (n-1)2 |
| 3n |
| n2 |
| 3n+1 |
=-1+2(1+
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3n-1 |
| (n-1)2 |
| 3n |
| n2 |
| 3n+1 |
=1+2•
1-
| ||
1-
|
| (n-1)2 |
| 3n |
| n2 |
| 3n+1 |
=-1+3-
| 1 |
| 3n-1 |
| (n-1)2 |
| 3n |
| n2 |
| 3n+1 |
=2-
| 2(n2-3n+6) |
| 3n+1 |
则Tn<
| 9 |
| 4 |
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.
练习册系列答案
相关题目