题目内容
13.设x,y满足约束条件$\left\{\begin{array}{l}x+y≥2\\ x-y≤2\\ y≥1\end{array}\right.$,则目标函数z=x+2y的最小值为( )| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
分析 先根据条件画出可行域,设z=x+2y,再利用几何意义求最值,将最小值转化为y轴上的截距最大,只需求出直线z=x+2y,取得截距的最小值,从而得到z最小值即可.
解答
解:作出x,y满足约束条件$\left\{\begin{array}{l}x+y≥2\\ x-y≤2\\ y≥1\end{array}\right.$,所表示的平面区域,由z=x+2y可得y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
则$\frac{1}{2}$z为直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
在y轴上的截距,截距越小,z越小,
做直线L:x+2y=0,然后把直线L向可行域方向平移,当经过点A时,z最小,
由$\left\{\begin{array}{l}{y=1}\\{x-y=2}\end{array}\right.$可得A(3,1),此时z=5,
故选:C.
点评 借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.
练习册系列答案
相关题目
3.已知P为圆C:x2+y2=π2内任意一点,则点P落在函数f(x)=sinx的图象与x轴围成的封闭区域内的概率为( )
| A. | 0 | B. | 1 | C. | $\frac{2}{π^3}$ | D. | $\frac{4}{π^3}$ |
4.已知某蔬菜商店买进的土豆x(吨)与出售天数y(天)之间的关系如表所示:

(Ⅰ)请根据表中数据在所给网格中绘制散点图;
(Ⅱ)请根据表中提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehaty=\widehatbx+\widehata$(其中$\widehatb$保留2位有效数字);
(Ⅲ)根据(Ⅱ)中的计算结果,若该蔬菜商店买进土豆40吨,则预计可以销售多少天(计算结果保留整数)?
附:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.
| x | 2 | 3 | 4 | 5 | 6 | 7 | 9 | 12 |
| y | 1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(Ⅰ)请根据表中数据在所给网格中绘制散点图;
(Ⅱ)请根据表中提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehaty=\widehatbx+\widehata$(其中$\widehatb$保留2位有效数字);
(Ⅲ)根据(Ⅱ)中的计算结果,若该蔬菜商店买进土豆40吨,则预计可以销售多少天(计算结果保留整数)?
附:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.
18.“|x-1|+|x+2|≤5”是“-3≤x≤2”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |