ÌâÄ¿ÄÚÈÝ
4£®ÒÑ֪ijÊß²ËÉ̵êÂò½øµÄÍÁ¶¹x£¨¶Ö£©Óë³öÊÛÌìÊýy£¨Ì죩֮¼äµÄ¹ØÏµÈç±íËùʾ£º| x | 2 | 3 | 4 | 5 | 6 | 7 | 9 | 12 |
| y | 1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
£¨¢ñ£©Çë¸ù¾Ý±íÖÐÊý¾ÝÔÚËù¸øÍø¸ñÖлæÖÆÉ¢µãͼ£»
£¨¢ò£©Çë¸ù¾Ý±íÖÐÌṩµÄÊý¾Ý£¬ÓÃ×îС¶þ³Ë·¨Çó³öy¹ØÓÚxµÄÏßÐԻع鷽³Ì$\widehaty=\widehatbx+\widehata$£¨ÆäÖÐ$\widehatb$±£Áô2λÓÐЧÊý×Ö£©£»
£¨¢ó£©¸ù¾Ý£¨¢ò£©ÖеļÆËã½á¹û£¬Èô¸ÃÊß²ËÉ̵êÂò½øÍÁ¶¹40¶Ö£¬ÔòÔ¤¼Æ¿ÉÒÔÏúÊÛ¶àÉÙÌ죨¼ÆËã½á¹û±£ÁôÕûÊý£©£¿
¸½£º$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$£¬$\widehata=\overline y-\widehatb\overline x$£®
·ÖÎö £¨¢ñ£©¸ù¾Ý±íÖÐÊý¾Ý»³öÉ¢µãͼ¼´¿É£»
£¨¢ò£©ÒÀÌâÒ⣬¼ÆËã$\overline x$¡¢$\overline y$£¬Çó³ö»Ø¹éϵÊý£¬Ð´³ö»Ø¹éÖ±Ïß·½³Ì£»
£¨¢ó£©Óɻع鷽³Ì¼ÆËãx=40ʱyµÄÖµ¼´¿É£®
½â´ð ½â£º£¨¢ñ£©¸ù¾Ý±íÖÐÊý¾Ý»³öÉ¢µãͼÈçÏÂËùʾ£º![]()
£¨¢ò£©ÒÀÌâÒ⣬¼ÆËã$\overline x$=$\frac{1}{8}$£¨2+3+4+5+6+7+9+12£©=6£¬
$\overline y$=$\frac{1}{8}$£¨1+2+3+3+4+5+6+8£©=4£¬
$\sum_{i=1}^8{x{\;}_i^2}=4+9+16+25+36+49+81+144=364$£¬
$\sum_{i=1}^8{x_i}{y_i}=2+6+12+15+24+35+54+96=244$£¬
Ç󻨹éϵÊýΪ$\widehatb=\frac{{\sum_{i=1}^8{x_i}{y_i}-8\overline x\overline y}}{{\sum_{i=1}^8{x{\;}_i^2}-8{{\overline x}^2}}}=\frac{244-8¡Á6¡Á4}{{364-8¡Á{6^2}}}=\frac{52}{76}=0.68$£¬
¡à$\widehata=4-0.68¡Á6=-0.08$£»
¡à»Ø¹éÖ±Ïß·½³ÌΪ$\widehaty=0.68x-0.08$£®
£¨¢ó£©ÓÉ£¨¢ò£©¿ÉÖªµ±x=40ʱ£¬y=0.68¡Á40-0.08¡Ö27£¬
¹ÊÂò½øÍÁ¶¹40¶Ö£¬Ô¤¼Æ¿ÉÏúÊÛ27Ì죮
µãÆÀ ±¾Ì⿼²éÁ˻عéÖ±Ïß·½³ÌµÄÇó·¨ÓëÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡Ì⣮
| A£® | £¨1£¬2£© | B£® | $£¨{1£¬\frac{{3\sqrt{2}}}{4}}]$ | C£® | £¨1£¬+¡Þ£© | D£® | $£¨{\frac{{3\sqrt{2}}}{4}£¬2}£©$ |
| A£® | 10 | B£® | 8 | C£® | 3 | D£® | 2 |
| A£® | $[{\frac{3¦Ð}{8}+2k¦Ð£¬\frac{7¦Ð}{8}+2k¦Ð}]£¨k¡ÊZ£©$ | B£® | $[{-\frac{¦Ð}{8}+2k¦Ð£¬\frac{3¦Ð}{8}+2k¦Ð}]£¨k¡ÊZ£©$ | ||
| C£® | $[{\frac{3¦Ð}{8}+k¦Ð£¬\frac{7¦Ð}{8}+k¦Ð}]£¨k¡ÊZ£©$ | D£® | $[{-\frac{¦Ð}{8}+k¦Ð£¬\frac{3¦Ð}{8}+k¦Ð}]£¨k¡ÊZ£©$ |
| A£® | a£¼c£¼b | B£® | b£¼c£¼a | C£® | c£¼a£¼b | D£® | c£¼b£¼a |
| x | 1 | 2 | 3 | 5 | 6 | 7 |
| y | 60 | 55 | 53 | 46 | 45 | 41 |
£¨2£©Å©¿ÆËùÔÚÈçͼËùʾµÄÖ±½ÇÌÝÐεؿéµÄÿ¸ö¸ñµã£¨Ö¸×Ý¡¢ºáÖ±ÏߵĽ»²æµã£©´¦¶¼ÖÖÁËÒ»Öê¸Ã×÷ÎͼÖÐ
ÿ¸öСÕý·½Ðεı߳¤¾ùΪ 1£¬Èô´ÓÖ±½ÇÌÝÐεؿéµÄ±ß½çºÍÄÚ²¿¸÷Ëæ»úѡȡһÖê¸Ã×÷ÎÇóÕâÁ½Öê×÷Îï¡°Ïà
½ü¡±ÇÒÄê²úÁ¿½öÏà²î3kgµÄ¸ÅÂÊ£®
¸½£º¶ÔÓÚÒ»×éÊý¾Ý£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬¡£¬£¨xn£¬yn£©£¬Æä»Ø¹éÖ±Ïßy=bx+aµÄбÂʺͽؾàµÄ×îС¶þ³Ë¹À
¼Æ·Ö±ðΪ£¬$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{£¨\overline x£©}^2}}}=\frac{{\sum_{i=1}^n{£¨{x_i}-\overline x£©£¨{y_i}-\overline y}£©}}{{\sum_{i=1}^n{{{£¨{x_i}-\overline x£©}^2}}}}$£¬$a=\overline y-b\overline x$£®