题目内容
【题目】已知
.
(1)若函数
的图象在点
处的切线平行于直线
,求
的值;
(2)讨论函数
在定义域上的单调性;
(3)若函数
在
上的最小值为
,求
的值.
【答案】(1)
(2)
时,在
为增函数;
时,减区间为
,增区间为
(3)![]()
【解析】试题分析:(1)由导数的几何意义可求得切线的斜率,从而得到关于a的方程,求得其值;(2)确定函数的定义域,根据f′(x)>0,可得f(x)在定义域上的单调性;(3)求导函数,分类讨论,确定函数f(x)在[1,e]上的单调性,利用f(x)在[1,e]上的最小值为
,即可求a的值
试题解析:(1)![]()
由题意可知
,故![]()
(2)![]()
当
时,因为
,
,故
在
为增函数;
当
时,由
;由
,
所以增区间为
,减区间为
,
综上所述,当
时,
在
为增函数;当
时,
的减区间为
,增区间为
.
(3)由(2)可知,当
时,函数
在
上单调递增,
故有
,所以
不合题意,舍去.
当
时,
的减区间为
,增区间为
.
若
,则函数
在
上单调递减,
则
不合题意,舍去.
若
时,函数
在
上单调递增,
,所以
不合题意,舍去.
若
时,
,
解得
,
综上所述,
.
【题目】第
届夏季奥林匹克运动会将于 2016 年 8 月 5 日—21 日在巴西里约热内卢举行.下表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据( 单位: 枚).
第 | 第 | 第 | 第 | 第 | |
中国 |
|
|
|
|
|
俄罗斯 |
|
|
|
|
|
(1)根据表格中两组数据完成近五届奥运会两国代表团获得的金牌数的茎叶图, 并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度( 不要求计算出具体数值, 给出结论即可);
(2)甲、 乙、 丙三人竞猜今年中国代表团和俄罗斯代表团中的哪一个获得的金牌数多( 假设两国代表团获得的金牌数不会相等) , 规定甲、 乙、 丙必须在两个代表团中选一个, 已知甲、 乙猜中国代表团的概率都为
, 丙猜中国代表团的概率为
, 三人各自猜哪个代表团的结果互不影响.现让甲、 乙、 丙各猜一次, 设三人中猜中国代表团的人数为
,求
的分布列及数学期望
.