题目内容

若sinα,cosα是方程3x2+6mx+2m+1=0的两根,则实数m的值为(  )
A、-
1
2
B、
5
6
C、-
1
2
5
6
D、
1
2
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:由题意,利用根与系数的关系表示出sinα+cosα与sinαcosα,再利用同角三角函数间基本关系化简,求出m的值即可.
解答: 解:∵sinα,cosα是方程3x2+6mx+2m+1=0的两根,
∴△=36m2+12(2m+1)=12(3m2+2m+1)≥0,
且sinα+cosα=-
6m
3
=-2m,sinαcosα=
2m+1
3

∵(sinα+cosα)2=sin2α+cos2α+2sinαcosα=1+2sinαcosα,
∴4m2=1+
4m+2
3

解得:m=-
1
2
或m=
5
6

当m=
5
6
时,sinα+cosα=-
5
3
,不成立,舍去;
则m=-
1
2

故选:A.
点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网