题目内容

设数列{an}满足a1=2,an+1=4an-3n+1,n∈N*,则数列{an}的前n项和可以表示为(  )
A、
n
i=1
C
i-1
n
3n-i+1
B、
n
i=1
C
i-1
n
3n-i+i)
C、
n
i=1
C
i
n
3n-i+1
D、
n
i=1
C
i
n
3n-i+i)
考点:等比关系的确定,数列的求和
专题:等差数列与等比数列,二项式定理
分析:由已知an+1=4an-3n+1,变形为an+1-(n+1)=4(an-n),利用等比数列和等差数列的前n项和公式、二项式定理即可得出.
解答: 解:∵an+1=4an-3n+1,
∴an+1-(n+1)=4(an-n),
∵a1=2,
∴a1-1=1,
∴数列{an-n}是以1为首项,公比为4的等比数列.
an-n=4n-1an=4n-1+n
Sn=(1+1)+(4+2)+(42+3)+…+(4n-1+n)
=(1+2+3+…+n)+(1+4+42+…+4n-1
=
n(n+1)
2
+
4n-1
3

1
3
(4n-1)
+
1
2
n(n+1)

=
1
3
[(3+1)n-1]+
1
2
n(n+1)

=
1
3
(3n+
C
1
n
3n-1+…+
C
n-2
n
32+
C
n-1
n
3+1-1)
+
1
2
n(n+1)

=3n-1+
C
1
n
3n-2
+…+
C
n-2
n
3+
C
n-1
n
+(1+2+…+n)
=
n
i=1
(
C
i-1
n
3n-i+i)

故选:B.
点评:本题考查了等比数列和等差数列的通项公式及其前n项和公式、二项式定理,考查了推理能力和计算能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网