题目内容
8.已知函数f(x)=2ex-m-x,其中m为实数.(1)若m≤1,对任意x∈R,记f(x)的最小值为g(m),求g(m)的最小值;
(2)若f(x)在[0,2m]上有两个零点,求m的取值范围.
分析 (1)利用导数可得函数f(x)在∈(-∞,m-ln2)递减,在(m-ln2,+∞)递增,f(x)的最小值为g(m)=f(m-ln2)=1+ln2-m,g(m)的最小值g(1)=kn2.
(2)依题意的m>0.由(1)得函数f(x)在∈(-∞,m-ln2)递减,在(m-ln2,+∞)递增且f(x)的最小值为f(m-ln2)=1+ln2-m.f(x)在[0,2m]上有两个零点,则必须满足:$\left\{\begin{array}{l}{m>0}\\{0<m-ln2<2m}\end{array}\right.$且$\left\{\begin{array}{l}{f(0)=2{e}^{-m}≥0}\\{f(2m)=2{e}^{m}-2m≥0}\\{f(m-ln2)=1+ln2-m<0}\end{array}\right.$解得m.
解答 解:(1)f′(x)=2ex-m-1,令f′(x)=2ex-m-1=0,得x=m-ln2.
当x∈(-∞,m-ln2)时,f′(x)<0,当x∈(m-ln2,+∞)时,f′(x)>0.
∴函数f(x)在∈(-∞,m-ln2)递减,在(m-ln2,+∞)递增,
f(x)的最小值为g(m)=f(m-ln2)=1+ln2-m,
∵m≤1,∴g(m)的最小值g(1)=kn2.
(2)依题意的m>0.由(1)得函数f(x)在∈(-∞,m-ln2)递减,在(m-ln2,+∞)递增
且f(x)的最小值为f(m-ln2)=1+ln2-m.
f(x)在[0,2m]上有两个零点,则必须满足:$\left\{\begin{array}{l}{m>0}\\{0<m-ln2<2m}\end{array}\right.$且$\left\{\begin{array}{l}{f(0)=2{e}^{-m}≥0}\\{f(2m)=2{e}^{m}-2m≥0}\\{f(m-ln2)=1+ln2-m<0}\end{array}\right.$
解得:m>1+ln2
m的取值范围为(1+ln2,+∞)
点评 本题考查了函数的单调性,最值,及零点问题,属于中档题,
| A. | y=±$\sqrt{3}$x | B. | y=±2x | C. | y=±$\sqrt{2}$x | D. | y=±$\sqrt{5}$x |