题目内容

求证:4×6n+5n+1-9能被20整除.
考点:二项式定理的应用
专题:二项式定理
分析:利用二项式定理的展开式,4×6n+5n+1-9=4×(6n-1)+5×(5n-1)=4×[(5+1)n-1]+5×[(4+1)n-1],问题得以解决.
解答: 解:4×6n+5n+1-9
=4×(6n-1)+5×(5n-1)
=4×[(5+1)n-1]+5×[(4+1)n-1]
=4×(
C
0
n
50+
C
1
n
51+…+
C
n
n
5n-1)
+5×
(C
0
n
40
+C
1
n
41+…+
C
n
n
4n-1)

=4×5×
(C
1
n
+
C
2
n
•5+
C
3
n
52+…+
C
n
n
5n-1)
+5×4×(
C
1
n
+
C
2
n
•4
+C
3
n
42+…
+C
n
n
4n-1

=20×[
(C
1
n
+
C
2
n
•5+
C
3
n
52+…+
C
n
n
5n-1)
+(
C
1
n
+
C
2
n
•4
+C
3
n
42+…
+C
n
n
4n-1
)]
∴4×6n+5n+1-9能被20整除.
点评:本题主要考查了二项式定理的应用,利用展开式求证数的整除的问题,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网