题目内容
8.设集合A={x|$\frac{x-2}{x+3}$≤0},B={x|-4≤x≤1},则A∩B=( )| A. | [-3,1] | B. | [-4,2] | C. | [-2,1] | D. | (-3,1] |
分析 先分别求出集合A和B,由此利用交集定义能求出A∩B.
解答 解:∵集合A={x|$\frac{x-2}{x+3}$≤0}={x|-3<x≤2},
B={x|-4≤x≤1},
∴A∩B={x|-3<x≤1}=(-3,1].
故选:D.
点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.
练习册系列答案
相关题目
19.
2017年郴州市两会召开前夕,某网站推出两会热点大型调查,调查数据表明,民生问题是百姓最为关心的热点,参与调查者中关注此问题的约占80%,现从参与者中随机选出200人,并将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),得到的频率分布直方图如图所示:
(Ⅰ)求出频率分布直方图中a的值,并求出这200人的平均年龄;
(Ⅱ)现在要从年龄较小的第1组和第2组中用分层抽样的方法抽取5人,再从这5人中随机抽取2人赠送礼品,求抽取的2人中至少有人年龄在第1组的概率;
(Ⅲ)把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,若选出的200人中不关注民生问题的人中老年人有10人,根据以上数据,完成以下列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为关注民生问题与年龄有关?
附:
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
(Ⅰ)求出频率分布直方图中a的值,并求出这200人的平均年龄;
(Ⅱ)现在要从年龄较小的第1组和第2组中用分层抽样的方法抽取5人,再从这5人中随机抽取2人赠送礼品,求抽取的2人中至少有人年龄在第1组的概率;
(Ⅲ)把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,若选出的200人中不关注民生问题的人中老年人有10人,根据以上数据,完成以下列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为关注民生问题与年龄有关?
| 关注民生 | 不关注民生 | 合计 | |
| 青少年组 | 90 | 30 | 120 |
| 中老年组 | 70 | 10 | 80 |
| 合计 | 160 | 40 | 200 |
| p(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
3.
如图一所示,由弧AB,弧AC,弧BC所组成的图形叫做勒洛三角形,它由德国机械工程专家、机械运动学家勒洛首先发现的,它的构成如图二所示,以正三角形ABCd的每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,由三段弧所围成的曲边三角形即为勒洛三角形,有一个如图一所示的靶子,某人向靶子射出一箭,若此箭一定能射中靶子且射中靶子中的任意一点是等可能的,则此箭恰好射中三角形ABC内部(即阴影部分)的概率为( )
| A. | $\frac{\sqrt{3}}{2π-\sqrt{3}}$ | B. | $\frac{\sqrt{3}}{2(π-\sqrt{3}})$ | C. | $\frac{2π-3\sqrt{3}}{2(π-\sqrt{3})}$ | D. | $\frac{2π-2\sqrt{3}}{2π-\sqrt{3}}$ |
13.设x∈R,若“|x-a|<1(a∈R)”是“x2+x-2>0”的充分不必要条件,则a的取值范围是( )
| A. | (-∞,-3]∪[2,+∞) | B. | (-∞,-3)∪(2,+∞) | C. | (-3,2) | D. | [-3,2] |
16.已知圆M过定点(0,1)且圆心M在抛物线x2=2y上运动,若x轴截圆M所得的弦为|PQ|,则弦长|PQ|等于( )
| A. | 2 | B. | 3 | ||
| C. | 4 | D. | 与点位置有关的值 |