题目内容
14.复数$\frac{2i}{1-i}$(i是虚数单位)的虚部是( )| A. | -1 | B. | 2 | C. | -2 | D. | 1 |
分析 直接由复数代数形式的乘除运算化简复数$\frac{2i}{1-i}$,则答案可求.
解答 解:$\frac{2i}{1-i}$=$\frac{2i(1+i)}{(1-i)(1+i)}=-1+i$,
则复数$\frac{2i}{1-i}$(i是虚数单位)的虚部是:1.
故选:D.
点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
练习册系列答案
相关题目
5.
某市气象部门对该市中心城区近4年春节期间(每年均统计春节假期的前7天)的空气污染指数进行了统计分析,且按是否燃放鞭炮分成两组,得到如图的茎叶图,根据国家最新标准,空气污染指数不超过100的表示没有雾霾,超过100的表示有雾霾.
(Ⅰ)若从茎叶图有雾霾的14天中随机抽取2天,用随机变量ξ表示被抽中且未燃放鞭炮的天数,求ξ的分布列及数学期望;
(Ⅱ)通过茎叶图填写下面的2×2列联表,并判断有多大的把握可以认为燃放鞭炮与产生雾霾有关?
附:独立性检验卡方统计量:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d为样本容量;
独立性检验临界值表:
(Ⅰ)若从茎叶图有雾霾的14天中随机抽取2天,用随机变量ξ表示被抽中且未燃放鞭炮的天数,求ξ的分布列及数学期望;
(Ⅱ)通过茎叶图填写下面的2×2列联表,并判断有多大的把握可以认为燃放鞭炮与产生雾霾有关?
| 燃放 | 未燃放 | 合计 | |
| 有雾霾 | |||
| 无雾霾 | |||
| 合计 |
独立性检验临界值表:
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
6.某产品在某零售摊位的零售价x(单位:元)与每天的销售量y(单位:个)的统计资料如表所示:
由表可得回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中的$\stackrel{∧}{b}$=-4,据此模型预测零售价为20元时,每天的销售量为 ( )
| x | 16 | 17 | 18 | 19 |
| y | 50 | 34 | 41 | 31 |
| A. | 26个 | B. | 27个 | C. | 28个 | D. | 29个 |
3.设椭圆的标准方程为$\frac{x^2}{9-k}+\frac{y^2}{5-k}=1$,若焦点在x轴上,则实数k的取值范围是( )
| A. | k>5 | B. | 5<k<9 | C. | k<5 | D. | k>9 |
4.已知全集U={y|y=x3,x=-1,0,1,2},集合A={-1,1},B={1,8},则A∩(∁UB)=( )
| A. | {-1,1} | B. | {-1} | C. | {1} | D. | ∅ |