题目内容
15.抛物线y=$\frac{1}{8}$x2的焦点坐标为(0,2).分析 根据题意,先将抛物线的方程变形为标准方程,分析可得其其焦点在y轴上,且p=4,由抛物线焦点坐标公式,计算可得答案.
解答 解:根据题意,所给抛物线的方程为y=$\frac{1}{8}$x2,则其标准方程为x2=8y,
则其焦点在y轴上,且p=4,
则其焦点坐标为(0,2);
故答案为:(0,2)
点评 本题考查抛物线的几何性质,注意要先将抛物线的方程转化为标准方程.
练习册系列答案
相关题目
5.在棱长为2的正方体中,动点P在ABCD内,且P到直线AA1,BB1的距离之和等于$2\sqrt{2}$,则△PAB的面积最大值是( )
| A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 4 |
6.某省2016年高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制,各等制划分标准如表所示:
同时认定A,B,C为合格,D为不合格.已知甲,乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取100名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出甲校的样本频率分布直方图如图1所示,乙校的样本中等级为C,D的所有数据茎叶图如图2所示.

(1)求图中x的值,并根据样本数据比较甲乙两校的合格率;
(2)在乙校的样本中,从成绩等级为C的学生中随机抽取2名学生,从成绩等级为D的学生中随机抽取1名学生进行调研,求抽出的3名学生中恰有1名学生成绩在65分以上的概率.
| 分数 | [85,100] | [70,85) | [60,70) | [0,60) |
| 等级 | A等 | B等 | C等 | D等 |
(1)求图中x的值,并根据样本数据比较甲乙两校的合格率;
(2)在乙校的样本中,从成绩等级为C的学生中随机抽取2名学生,从成绩等级为D的学生中随机抽取1名学生进行调研,求抽出的3名学生中恰有1名学生成绩在65分以上的概率.
10.在锐角△ABC中,a=1,B=2A,则b的取值范围是( )
| A. | $(1,\sqrt{3})$ | B. | $(\sqrt{2},\sqrt{3})$ | C. | $(\sqrt{2},2)$ | D. | $(\sqrt{3},2)$ |
7.已知数列{an}的各项均为正数,其前n项和为S,且na${\;}_{n+1}^{2}$=(n+1)a${\;}_{n}^{2}$+anan+1,a1=$\frac{π}{3}$,则tanSn的取值集合是( )
| A. | {0,$\sqrt{3}$} | B. | {0,$\sqrt{3}$,$\frac{\sqrt{3}}{3}$} | C. | {0,$\sqrt{3}$,$-\frac{\sqrt{3}}{3}$} | D. | {0,$\sqrt{3}$,-$\sqrt{3}$} |
4.已知F1,F2是双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,且F2是抛物线C2:y2=2px(p>0)的焦点,P是双曲线C1与抛物线C2在第一象限内的交点,线段PF2的中点为M,且|OM|=$\frac{1}{2}$|F1F2|,其中O为坐标原点,则双曲线C1的离心率是( )
| A. | 2+$\sqrt{3}$ | B. | 1+$\sqrt{2}$ | C. | 2+$\sqrt{2}$ | D. | 1+$\sqrt{3}$ |
5.若($\frac{1}{2}$x-2y)2n+1的展开式中前n+1项的二项式系数之和为64,则该展开式中x4y3的系数是( )
| A. | -$\frac{35}{2}$ | B. | 70 | C. | $\frac{35}{2}$ | D. | -70 |