题目内容

若函数f(x)满足:在定义域D内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)为“1的饱和函数”.给出下列四个函数:①f(x)=
1
x
;②f(x)=2x; ③f(x)=lg(x2+2);④f(x)=x.其中是“1的饱和函数”的所有函数的序号是
 
考点:函数的值
专题:函数的性质及应用
分析:利用“1的饱和函数”的定义和函数的性质求解.
解答: 解:①f(x)=
1
x
,D=(-∞,0)∪(0,+∞),
若f(x)=
1
x
是“1的饱和函数”,
则存在非零实数x0,使得
1
x0+1
=
1
x0
+1

即x02+x0+1=0,
因为此方程无实数解,所以函数f(x)=
1
x
不是“1的饱和函数”.
②f(x)=2x,D=R,则存在实数x0,使得2x0+1=2x0+2解得x0=1,
因为此方程有实数解,
所以函数f(x)=2x是“1的饱和函数”.
③f(x)=lg(x2+2),若存在x,使f(x+1)=f(x)+f(1)
则lg[(x+1)2+2]=lg(x2+2)+lg3
即2x2-2x+3=0,
∵△=4-24=-20<0,故方程无解.即f(x)=lg(x2+2)不是“1的饱和函数”.
④f(x)=x,存在x,使得f(x+1)=f(x)+f(1),
即f(x)=x是“1的饱和函数”.
故答案为:②④.
点评:本题考查“1的饱和函数”的判断,是基础题,解题时要注意函数的性质的合理运用
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网