题目内容
已知是定义在上的减函数,则的取值范围是( )
A. B. C. D.
(本题满分14分) 本题共有3个小题,第1小题4分,第2小题5分,第3小题5分.
设等比数列的前项的和为,公比为.
(1)若成等差数列,求证:成等差数列;
(2)若(为互不相等的正整数)成等差数列,试问数列中是否存在不同的三项成等差数列?若存在,写出两组这三项;若不存在,请说明理由;
(3)若为大于的正整数.试问中是否存在一项,使得恰好可以表示为该数列中连续两项的和?请说明理由.
已知三条直线和交于一点,则实数的值为 .
(本题满分14分)已知函数f(x)=.
(1)写出函数f(x)的单调减区间;
(2)求解方程.
函数f(x)=㏑x的图像与函数g(x)=x2-4x+4的图像的交点个数为( )
A.0 B.1 C.2 D.3
设,且,则____ ______.
(本小题满分12分)
某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元。该公司第n年需要付出设备的维修和工人工资等费用的信息如图,其中点落在一条直线上.
(1)求;
(2)引进这种设备后,第几年后该公司开始获利;
(3)这种设备使用多少年,该公司的年平均获利最大?
用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3…(2n-1)(n∈N*)时,从“n=k到n=k+1”左边需增乘的代数式为( )
A.2k+1 B.2(2k+1) C. D.
(本小题满分12分)已知椭圆的左、右焦点分别为,离心率为,双曲线方程为,直线与双曲线的交点为且.
(Ⅰ)求椭圆与双曲线的方程;
(Ⅱ)过点的直线与椭圆交于两点,交双曲线于两点,当的内切圆的面积取最大值时,求的面积.