题目内容
6.已知$\frac{3π}{2}$<θ<2π,化简:$\sqrt{1+sinθ}$-$\sqrt{1-sinθ}$=-2sin$\frac{θ}{2}$.分析 利用二倍角公式以及同角三角函数基本关系式化简求解即可.
解答 解:$\frac{3π}{2}$<θ<2π,$\frac{3π}{4}<\frac{θ}{2}<π$,
$\sqrt{1+sinθ}$-$\sqrt{1-sinθ}$=|cos$\frac{θ}{2}$+sin$\frac{θ}{2}$|-|cos$\frac{θ}{2}$-sin$\frac{θ}{2}$|=-cos$\frac{θ}{2}$-sin$\frac{θ}{2}$-sin$\frac{θ}{2}$+cos$\frac{θ}{2}$=-2sin$\frac{θ}{2}$.
故答案为:-2sin$\frac{θ}{2}$.
点评 本题考查二倍角公式以及同角三角函数基本关系式的应用,考查计算能力.
练习册系列答案
相关题目
16.若实数x、y满足不等式组$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,且z=ax+y仅在点P(-$\frac{5}{2}$,$\frac{5}{2}$)处取得最小值,则a的取值范围为( )
| A. | 0<a<1 | B. | a>1 | C. | a≥1 | D. | a≤0 |
17.若13sinα+5cosβ=9,13cosα+5sinβ=15,则sin(α+β)的值为( )
| A. | $\frac{56}{65}$ | B. | $\frac{33}{65}$ | C. | $\frac{5}{6}$ | D. | $\frac{16}{65}$ |
1.
函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象如图所示.为了得到g(x)=-Acosωx(A>0,ω>0)的图象,可以将f(x)的图象( )
| A. | 向右平移$\frac{π}{12}$个单位长度 | B. | 向右平移$\frac{5π}{12}$个单位长度 | ||
| C. | 向左平移$\frac{π}{12}$个单位长度 | D. | 向左平移$\frac{5π}{12}$个单位长度 |
8.已知函数f(x)=(a2-1)x是其定义域上的单调减函数,则实数a的取值集合为( )
| A. | {a|0<a<1} | B. | $\left\{{\left.a\right|1<a<\sqrt{2}}\right\}$ | ||
| C. | $\left\{{\left.a\right|-\sqrt{2}<a<-1}\right.$或$\left.{1<a<\sqrt{2}}\right\}$ | D. | $\left\{{\left.a\right|-\sqrt{2}<a<\sqrt{2}}\right\}$ |
5.已知f(x)=xlnx在点(x0,f(x0))处的切线与直线2x+y+1=0垂直,则x0=( )
| A. | $\frac{1}{{e}^{2}}$ | B. | $\frac{1}{e}$ | C. | $\frac{\sqrt{e}}{e}$ | D. | $\sqrt{e}$ |
6.设向量$\vec a$与$\vec b$满足:$\vec b$在$\vec a$方向上的投影为1,$\vec a$与$\vec a-2\vec b$垂直,则$|{\vec a}|$=( )
| A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 3 |