题目内容
若抛物线y2=4x的焦点是F,准线是l,则经过点F、M(4,4)且与l相切的圆共有( )
| A、4个 | B、2个 | C、1个 | D、0个 |
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:圆心在FM的中垂线,经过点F,M且与l相切的圆的圆心到准线的距离与到焦点F的距离相等,圆心在抛物线上,直线与抛物线交于两点,得到有两个圆.
解答:
解:连接FM,做它的中垂线,则要求的圆心就在中垂线上,
经过点F,M且与l相切的圆的圆心到准线的距离与到焦点F的距离相等,
∴圆心在抛物线上,
∵直线与抛物线交于两点,
∴这两点可以作为圆心,这样的原有两个,
故选:B.
经过点F,M且与l相切的圆的圆心到准线的距离与到焦点F的距离相等,
∴圆心在抛物线上,
∵直线与抛物线交于两点,
∴这两点可以作为圆心,这样的原有两个,
故选:B.
点评:本题考查抛物线的简单性质,本题解题的关键是看出圆心的特点,看出圆心必须在抛物线上,而直线与抛物线有两个交点,即有两个点可以作为圆心.
练习册系列答案
相关题目
圆
(θ为参数)与直线3x-4y-9=0的位置关系是( )
|
| A、相切 | B、相离 |
| C、直线过圆心 | D、相交但直线不过圆心 |
已知平面向量
,
满足|
|=3,|
|=2,
与
的夹角为120°,若(
+m
)⊥
,则实数m的值为( )
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| A、1 | ||
B、
| ||
| C、2 | ||
| D、3 |
从装有3个白球,4个红球的箱子中,随机取出了3个球,恰好是2个白球的概率是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
函数f(x)=x3+x-1+lnx的零点所在的大致区间为( )
A、(0,
| ||||
B、(
| ||||
C、(
| ||||
| D、(1,2) |
设圆C的方程为x2+y2-2x-2y-2=0,直线l的方程为(m+1)x-my-1=0,圆C被直线l截得的弦长等于( )
| A、4 | ||
B、2
| ||
| C、2 | ||
| D、与m有关 |
数列{an}中,已知对任意n∈N*,a1+a2+…+an=3n-1,则a12+a22+…+an2=( )
A、
| ||
B、
| ||
C、
| ||
D、
|