题目内容
7.某电脑公司有6名产品推销员,其工作年限与年推销金额数据如下表:| 推销员编号 | 1 | 2 | 3 | 4 | 5 |
| 工作年限x年 | 3 | 5 | 6 | 7 | 9 |
| 年推销金额y万元 | 2 | 3 | 3 | 4 | 5 |
(2)求年推销金额y关于工作年限x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;若第6名产品推销员的工作年限为11年,试估计他的年推销金额.
附:回归直线的斜率和截距的最小二乘法估计公式为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{(x}_{i}-\overline{x}){(x}_{i}-\overline{y})}{{\sum_{i=1}^{n}{(x}_{i}-\overline{x})}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
分析 (1)列举基本事件,即可求出概率;
(2)将表中数据,先求出x,y的平均数,累加相关的数据后,代入相关系数公式,计算出回归系数,得到推销金额y关于工作年限x的线性回归方程,将工作年限为11年代,代入推销金额y关于工作年限x的线性回归方程,即可预报出他的年推销金额的估算值.
解答 解:(1)从编号1-5的五位推销员中随机选出两位,他们的年推销金额组合如下{2,3(1)},{2,3(2)},{2,4},{2,5},{3(1),3(2)},{3(1),4},{3(1),5},{3(2),4},{3(2),5},{4,5}共10种.
其中满足两人年推销金额不少于7万元的情况共有6种,则所求概率$P=\frac{6}{10}=\frac{3}{5}$.
(2)由表中数据可知:$\overline x=6,\overline y=3.4$,由上公式可得$\hat b=\frac{{-3×({-1.4})+({-1})×({-0.4})+1×0.6+3×1.6}}{9+1+1+9}=0.5$,$\hat a=\overline y-\hat b\overline x=3.4-0.5×6=0.4$.
故$\hat y=0.5x+0.4$,
又当x=11时,$\hat y=5.9$,
故第6名产品推销员的工作年限为11年,他的年推销金额约为5.9万元.
点评 本题考查概率的计算,考查回归分析的初步应用,考查利用最小二乘法求线性回归方程,是一个综合题目.
练习册系列答案
相关题目
18.直线x-y+4=0被圆x2+y2+4x-4y+6=0截得的弦长等于( )
| A. | 8 | B. | 4 | C. | 2$\sqrt{2}$ | D. | 4$\sqrt{2}$ |
15.8把椅子摆成一排,4人随机就座,任何两人不相邻的坐法种数为( )
| A. | 144 | B. | 120 | C. | 72 | D. | 24 |
2.定义在R上的函数f(x)满足:f′(x)>1-f(x),f(0)=6,f′(x)是f(x)的导函数,则不等式$f(x)>1+\frac{5}{e^x}$(其中e为自然对数的底数)的解集为( )
| A. | (0,+∞) | B. | (-∞,0)∪(3,+∞) | C. | (-∞,0)∪(1,+∞) | D. | (3,+∞) |
12.下列命题正确的是( )
| A. | 若ac>bc,则a>b | B. | 若a>b,c>d,则ac>bd | ||
| C. | 若a>b,则$\frac{1}{a}<\frac{1}{b}$ | D. | 若ac2>bc2,则a>b |
16.某地最近十年对某商品的需求量逐年上升,下表是部分统计数据:
(1)利用所给数据求年需求量y与年份x之间的回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)预测该地2018年的商品需求量(结果保留整数).
| 年份 | 2008 | 2010 | 2012 | 2014 | 2016 |
| 需要量(万件) | 236 | 246 | 257 | 276 | 286 |
(2)预测该地2018年的商品需求量(结果保留整数).
17.若函数f(x)=(x+1)2-alnx在区间(0,+∞)内任取有两个不相等的实数x1,x2,不等式$\frac{{f({{x_1}+1})-f({{x_2}+1})}}{{{x_1}-{x_2}}}$>1恒成立,则a的取值范围是( )
| A. | (-∞,3) | B. | (-∞,-3) | C. | (-∞,3] | D. | (-∞,-3] |